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1 Introduction
The BAP (Berth Allocation Problem) that we study consists in allocating berthing positions
on a quay and mooring times to incoming ships in a container terminal, with the objective to
minimize their turnaround times, that is, the total time they will spend at the port. The BAP,
which is a NP-hard problem, has received significant attention in the literature in operational
research (see the survey [1]), but only a dozen of the hundred of studies consider explicitly the
uncertainty on the arrival times of ships, for example [3]. However, in 2007, a large survey
revealed that over 40% of the container ships deployed on worldwide liner services arrive one
or more days behind the initial schedule [4].

Therefore, we extend the discrete model of the berth allocation problem, well established in
the literature, to the case of stochastic arrival times. In this model, the quay is partitioned
into segments, referred to as berths, which can each accommodate one ship at a time. The
service duration of a ship depends on the berth which it is assigned to. The deterministic
discrete berth allocation problem corresponds to the scheduling problem R | ri |

∑
Ci, with

additional start and end of availability for each machine, consisting in scheduling tasks (ships)
with ready times on unrelated parallel machines (berths) to minimize total completion time.
In the stochastic setting, we consider two lexicographic objectives: first, to maximize the
probability of feasibility, regarding the ends of availability of the berths, second, to minimize
the expected total turnaround time (the expected total flow time, that is, E[

∑n
i=1(Ci − ri)]).

The solution approach that we propose to solve the stochastic berth allocation problem
combines a proactive and a reactive phase. In the proactive phase, a planning is computed: a
berth assignment to ships and a sequencing of ships in berths. In the reactive phase, the berth
assignment to ships is fixed and ships are dynamically re-sequenced in berths as they arrive.
Thus, we offer the following novel contributions:

• an efficient algorithm that allows to evaluate exactly each planning, incorporated into an
iterated tabu search heuristic,

• an exact stochastic dynamic programming algorithm for the optimal dynamic manage-
ment of each berth,

• a global decision support system that combines the two previous contributions,

• numerical results that provide insights about the value of stochastic information for the
BAP.

2 Proactive phase: berth assignment, ship sequencing
It is assumed that the random variables describing the arrival times of ships are discrete and
independently distributed. It is also assumed that all time measurements are integer. Data
are introduced in table 1.



TAB. 1: Data of the stochastic berth allocation problem
B set of berths
V set of ships
Jsb, ebK availability of berth b ∈ B
pb

v service duration of ship v in berth b, v ∈ V , b ∈ B
Jrmin

v , rmax
v K possible arrival times t of ship v ∈ V

Pr(rv = t) probability that ship v ∈ V arrives at time t ∈ Jrmin
v , rmax

v K

We first introduce an algorithm that, given a planning - a berth assignment to ships and a
sequencing of ships in berths - computes in O(V τ) the probability distributions of the com-
pletion times of ships Cv, with τ = max{rmax

v − rmin
v | v ∈ V }. This algorithm is very useful,

since it allows to evaluate exactly the probability of feasibility and the expected turnaround
time of a planning during the execution of a solution method. It is based on the following
forward-recurrence equations. For the first ship in the sequence in berth b:

Pr(C1 = t+ pb
v) = Pr(rv ≤ sb), if t = sb, (1)

Pr(C1 = t+ pb
v) = Pr(rv = t), if t > sb. (2)

For the ships 2 to σb in the sequence in berth b:

Pr(Cv = t+ pb
v) = Pr(rv ≤ t− 1) Pr(Cv−1 = t) + Pr(rv = t) Pr(Cv−1 ≤ t) ∀t ∈ Jtmin

v , tmax
v K,

where tmin
v and tmax

v are respectively the minimum and maximum times at which the service of
ship v may start, with tmin

v = max{rmin
v , Cmin

v−1} and tmax
v = max{rmax

v , Cmax
v−1 }. The first term of

equation (3), Pr(rv ≤ t− 1) Pr(Cv−1 = t), corresponds to the case where ship v arrives before
the completion of ship v − 1 and has to wait. The second term, Pr(rv = t) Pr(Cv−1 ≤ t),
corresponds to the case where ship v arrives after the completion of ship v − 1 and receives
immediate service.

For the value of the first objective, the probability of feasibility is:∏
b∈B

∑
t∈JCmin

vb
,Cmax

vb
K:

t≤eb

Pr(Cvb
= t),

where vb denotes the last ship in the sequence of berth b.
For the value of the second objective, the expected total turnaround time is:

∑
v∈V

Cmax
v∑

t=Cmin
v

Pr(Cv = t)t−
∑
v∈V

rv,

where rv is the average arrival time of ship v.
We address the solution of the stochastic planning problem with a heuristic approach, based

on the T2S heuristic introduced by [2]. The T2S heuristic is a tabu search, which we extend
with the evaluation algorithm briefly described above, and which we integrate into an iterated
tabu search, that provides almost optimal solutions.

3 Reactive phase: re-sequencing
Here, the dynamic management of a single berth is considered, to which a set of ships have
been assigned. Note that, when the constraint on the end of availability of the berth is relaxed,
and for all v ∈ V , rmin

v = rmax
v , the problem amounts exactly to schedule tasks on one machine

with release dates while minimizing total completion time, which is NP-hard. Hence, the more
general problem of the dynamic management of one berth is NP-hard.



A decision has to be taken at the beginning of each period, when the berth is idle and at
least one ship is waiting. We associate with any of these times, called decision times, a state
defined as a triplet (t, VB, VS), where t is the current time, VB is the set of waiting ships, and
VS the set of incoming ships.

The evaluation of a state is provided by the best possible decision d∗ to be taken, which
first maximizes the resulting probability of feasibility f1(t, VB, VS) and then minimizes the
expected total turnaround time f2(t, VB, VS). At any given decision time, for a non-final state,
the decisions are numbered 0, 1, . . . , d, . . . , |VB|. The decision 0 is to delay the service of all
waiting ships, in order to wait for the arrival of another ship. The decision d ≥ 1 is to start
the service of the ship number d.

At any decision time t, if all ships have arrived (VS = ∅), the evaluation of the corresponding
state is immediate as the shortest processing time rule is optimal. Otherwise, for a non-final
state, the decision 0 of waiting is evaluated as follows:

f0
1 (t, VB, VS) =

∑
S⊆VS

Pr(S, t+ 1)f1(t+ 1, VB ∪ S, VS \ S), (3)

f0
2 (t, VB, VS) =

∑
S⊆VS

Pr(S, t+ 1)f2(t+ 1, VB ∪ S, VS \ S). (4)

For a waiting decision, the probability Pr(S, t+ 1) of the arrival of the subset of ships S ⊆ VS

at time t+ 1 is:

Pr(S, t+ 1) =
∏
v∈S

Pr(rv = t+ 1)
Pr(rv ≥ t+ 1)

∏
v∈(VS\S)

(
1− Pr(rv = t+ 1)

Pr(rv ≥ t+ 1)

)
. (5)

Finally, the decision of serving ship d ∈ J1, |VB|K is evaluated as follows:

fd
1 (t, VB, VS) =

∑
S⊆VS

Pr(S, t+ 1, t+ pd)f1(t+ pd, VB \ {d} ∪ S, VS \ S), (6)

fd
2 (t, VB, VS) =

∑
S⊆VS

Pr(S, t+ 1, t+ pd)f2(t+ pd, VB \ {d} ∪ S, VS \ S) + t+ pd. (7)

For the decision of serving ship d, the probability Pr(S, t+ 1, t+pd) of the arrival of the subset
of ships S ⊆ VS between times t+ 1 and t+ pd is:

Pr(S, t+ 1, t+ pd) =
∏
v∈S

Pr(t+ 1 ≤ rv ≤ t+ pd)
Pr(rv ≥ t+ 1)

∏
v∈(VS\S)

(
1− Pr(t+ 1 ≤ rv ≤ t+ pd)

Pr(rv ≥ t+ 1)

)
. (8)

The states are evaluated starting from time max{rmax
v | v ∈ V }, down to time max{sb,min{rmin

v |
v ∈ V }}.

4 Numerical experiments
We conduct numerical experiments, with two main objectives. The first objective is to eval-
uate the efficiency of the proposed approach to the stochastic berth allocation problem. The
second objective is to estimate the value of stochastic information for this problem. The usual
deterministic approach is taken as reference, consisting in solving exactly the deterministic
planning problem with average arrival times.

The instances of the benchmark set are adapted to the case of stochastic arrival times. There
are six types of instances: 25x5 (25 ships and 5 berths), 25x7, 25x10, 35x7, 35x10 and 60x12.
There are ten instances of each of the five first types and thirty instances of the last type.
The arrivals are distributed over a period of about 6 days. The probability distribution of
each arrival time is set to a binomial distribution, with 73 trials and a probability of success
equal to 0.5. Such a binomial distribution approximates a normal distribution, with a standard
deviation equal to 4.2 hours.
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Instance
Stochastic
planning

Deterministic
planning

time opt. gap time opt. gap
25x5 115.0 3.9 6.0 4.4
25x7 94.9 3.3 6.7 3.8
25x10 69.1 2.1 6.6 3.0
35x7 199.4 4.5 22.4 4.9
35x10 152.9 3.3 19.5 3.7
60x12 286.9 2.4 9.5 3.6
Average 186.5 3.0 11.2 3.8

TAB. 2: Comparative numerical results: stochastic planning approach against the deterministic one

The approaches to the stochastic berth allocation problem are evaluated with 1000 generated
scenarios for each instance. To assess the approximations provided by the restricted sets of
scenarios, we compared the exact and scenario-based evaluations of the computed plannings.
They always differ by less than 0.15%, which show that the approximations are reliable.

The deterministic planning problem associated with each scenario is solved optimally, pro-
viding the optimal value of the scenario. The optimal value of an instance in the stochastic
case is approximated by the average optimal value of its 1000 scenarios. It corresponds to
the case where optimal decisions of berth assignment and ship sequencing are taken in each
scenario.

In table 2, we report comparative numerical results between the stochastic planning approach
(column Stochastic planning) and the deterministic one (column Deterministic planning). As
each of the approaches provided a feasible solution to each of the generated scenarios, only
the minimization of turnaround time is considered. Each line of the table reports aggregated
results by type of instances. The average running time in seconds (column time) and the
average optimality gap in percent (column opt. gap) are provided.

In the case of stochastic arrival times, the deterministic planning approach performs rela-
tively well, with a global average optimality gap of 3.8%. Still, the stochastic planning ap-
proach reduces this gap to 3%, which is indeed a relative improvement of 21%. The numerical
results of the optimal dynamic management of each berth will be presented, obtained with the
stochastic dynamic programming algorithm. With the instance types with the highest ships to
berths ratios (25x5, 35x7, 60x12), an additional relative improvement of about 5% is observed.
Moreover, this algorithm significantly outperforms the fixed sequences of the planning in some
worst-case scenarios with unfavorable orders of arrival.
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