
Fair Distributed Resource Allocation in SDN

Zaid Allybokus12, Konstantin Avrachenkov2, Jérémie Leguay1, Lorenzo Maggi1
1 Huawei Technologies, Boulogne-Billancourt, France, {name.surname}@huawei.com

2 INRIA Sophia Antipolis, France, avratch@inria.fr

Mots-clés : SDN, fair resource allocation, ADMM, distributed algorithms

1 Introduction
The performance of computer networks relies on how bandwidth is shared among different

flows. Fair resource allocation is a challenging problem particularly when the flows evolve over
time. To address this issue, bandwidth sharing techniques that quickly react to the traffic fluc-
tuations are of interest, especially in large scale settings with hundreds of nodes and thousands
of flows. Local mechanisms such as Auto-Bandwidth [3] have been proposed to greedily adjust
the allocated bandwidth to flows as they evolve. However, they do not ensure fairness and do
not optimize resources globally.

Software-Defined Networking (SDN) technologies [2] are radically transforming network ar-
chitectures by offloading the control plane (e.g., routing, resource allocation) to powerful re-
mote platforms that gather and keep a global view of the network status in real-time and push
consistent configuration updates to the network equipment. The computation power of SDN
controllers fosters the development of a new generation of control plane that uses compute-
intensive operations. In this context, this work proposes a distributed algorithm that tackles
the fair resource allocation problem and fully benefits from cluster computing resources of SDN
controllers. Moreover, the algorithm generates a sequence of points converging to the optimum
while always remaining feasible, a property that standard primal-dual decomposition methods
often lack. Thanks to the distribution of all computer intensive operations, we demonstrate
that we can quickly solve large instances.

2 Model definition and methodology
We model our classic flow fair allocation problem by the means of the convex optimization

problem under linear constraints below :

minFα(x) = −
∑
r

wrf
α(xr) (1)

s.t. Ax ≤ C, x ≥ 0 (2)

fα(t) =
{

t1−α

1−α , α 6= 1
log(t), α = 1. (3)

We consider as objective function the family of weighted α-fair utility functions (3), where
xr is the allocated bandwidth under the coupling capacity constraints (2), for each request
(or flow) r. The weights (wr)r are parameters that allow to prioritize over requests that may
change over time in the online setting, and may compensate for, e.g., high delays experienced
by some flows.

The Alternating Directions Method of Multipliers (ADMM) (see [4], Chap. 5) is a well-known
technique for solving convex problems, due to its convenient decomposition properties for se-
parable objectives, which facilitate the design of distributed algorithms. In our case, ADMM
reduces to an iterative application of a proximal operator proxFα and of the euclidean projec-
tion onto the feasible polyhedron in (2). For general polyhedra, this approach can be costly



FIG. 1 – α = 1. Execution time. FIG. 2 – α = 1. Iteration count.

and difficult to scale up as the euclidean projection is in general non trivial. Nevertheless, there
exist efficient iterative algorithms addressing the problem (e.g., [1]) that, when combined with
ADMM, give rise to iterative algorithms where each iteration requires the convergence of a
projection sub-routine. As a result, assuming that computing proxFα is inexpensive, the cru-
shing majority of the computation effort of the algorithm would concern a series of projections
onto a polyhedron. Further, this makes it almost impossible to derive scalable algorithms for
larger families of objectives for which a proximal computation is harder.

In this work, we modify the formulation in order to distribute the problem with respect to the
requests sharing the resources, and the resources (links) handling the requests. Thus, every link
of the network can be perceived as a single agent in a cooperative scheme where all the agents
(requests and links) work together to achieve optimum. We show that this decomposition has
two major advantages. First, it permits to decouple the constraints (2), yielding, instead of a
single feasibility problem, several smaller problems that can be solved in parallel. Second, as
alternative algorithms are available in the particular case of a single constraint, it permits to
avoid the costs of an iterative projection sub-routine by using instead an algorithm as complex
as sorting a list that is run by each link in parallel.

3 Simulation and perspectives
We demonstrate the effectiveness and scalability of our decomposition on different random to-

pologies (hundreds of resources) by comparing it to the centralized classic ADMM (C-ADMM)
applied to the above formulation. We also show the interest of using the fast and exact pro-
jection algorithm on our decomposition (FD-ADMM) instead of the same iterative projection
approach as in C-ADMM for each resource (D-ADMM). Although the distributed approach
generally results in more iterations to convergence than the centralized version, we remark a
few more iterations is the affordable price for reduction of the computation time by at least two
orders of magnitude (see FIG. 1&2). Hence, this distributed FD-ADMM appears to be a good
candidate to tackle the online fair resource allocation problem in SDN controllers operating a
computing cluster.

Références
[1] Alfredo N Iusem and Alvaro R De Pierro. A simultaneous iterative method for computing projections on polyhedra.

SIAM Journal on Control and Optimization, 25(1) :231–243, 1987.
[2] Diego Kreutz, Fernando MV Ramos, P Esteves Verissimo, Christian Esteve Rothenberg, Siamak Azodolmolky, and

Steve Uhlig. Software-defined networking : A comprehensive survey. Proc. IEEE, 103(1) :14–76, 2015.
[3] Udayasree Palle, Dhruv Dhody, Ravi Singh, Luyuan Fang, and Rakesh Gandhi. PCEP Extensions for MPLS-TE LSP

Automatic Bandwidth Adjustment with Stateful PCE. Internet-Draft draft-dhody-pce-stateful-pce-auto-bandwidth-
08, Internet Engineering Task Force, August 2016. Work in Progress.

[4] Neal Parikh, Stephen P Boyd, et al. Proximal algorithms. Foundations and Trends in optimization, 1(3) :127–239,
2014.


