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Abstract : A set-partitioning problem for car wirings is addressed, in order to minimize the produc-
tion costs. An approach to divide the problem in smaller sub-problems is presented, and three different
constructive methods are proposed and compared according to quality, computing time, and robustness.

1 Introduction
Due to the wide variety of vehicles, car manufacturers have a huge number of different electrical services
to build. Indeed, they could make as many wirings (where a wiring is made of a set of modules, each
module having a different presence cost if it appears in the wiring) as there are electrically different
cars, but this brings diversity management costs, called the diversity tax. Alternatively, they could
make a few standardized wirings, rich enough to suit different vehicles, even if unnecessary modules
are set up on many cars, which has also an important cost, called the give-away. In any case, some
constraints have to be satisfied. On the one hand, some modules require the presence of other modules
(implication constraints), and on the other hand, some modules are incompatible (exclusion constraints).
The goal of this work is to find a balance between these two extreme solutions, hence minimizing the
costs (composed of the give-away plus the diversity tax), while covering the demand, and satisfying the
implication/exclusion constraints.
The considered problem, denoted as (P ), is NP-hard. Indeed, it is a generalization of problems as the
Generalized Assignment Problem [6] and the p-Median Problem [5], which are known to be NP-hard [3].
Real data will be considered, obtained from the French multinational car manufacturer Renault (in 2013
it was the eleventh biggest automaker in the world by production volume, with 50.5% of sales coming
outside of Europe). We consider instances covering 67% of 7 years of production for Renault, including
past, present and future years (one set covering 6 months for just a section of a car i.e., either the
dashboard, the engine, the ceiling, the trunk, or the doors, from the most to the less complex section).
On the one hand, the considered data sets are too big for CPLEX. On the other hand, a simpler problem
(where the produced wirings are not created but chosen among the demanded ones) was investigated in
[1] with an exact method, but it was limited to small instances (up to roughly 5000 demands). Therefore,
heuristics and metaheuristics appear as the most appropriate methods. The reader is referred to [4] for
a good survey on metaheuristics, and to [7] for guidelines on how to design them efficiently.
The contributions of this paper are: (1) a new but real problem (P ) is formulated, and a way to divide
it into sub-problems with fewer constraints (Section 2); (2) constructive solution methods are proposed
(Section 3). The results are presented in Section 4 and a conclusion ends the paper in Section 5.

2 Formulation and decomposition of (P )
A set of demands D is given, of typical size in [1 000, 50 000]. Each demand d ∈ D is made on the
one hand of a list Md of the different requested modules among the set M of all possible modules
(of typical size in [20, 60]), corresponding to the electrical options that the client (which is not a final
consumer but a car dealer) wants for its vehicles, and on the other hand of the number Qd of vehicles
it wants, with typical values in [1, 30 000]. Producing each demand separately would be too expensive



for Renault, because of the huge resulting diversity tax. An envelope (wiring) is a given set of modules,
that is usually large enough to cover several demands. For each given instance, each demand is covered
by exactly one envelope (i.e., all the modules requested in a demand belong to its assigned envelope),
in order for Renault to know that, even if those envelopes are expensive (regarding the give-away),
a feasible solution is to build them only. The envelopes express technical barriers (e.g., right or left
steering), which means that two different envelopes cannot be grouped together as one wiring. In other
words, the envelopes represent implicit exclusion constraints. The set of envelopes is denoted E , and
has a typical size in [20, 40]. A reference (wiring) is defined the same way as an envelope, but it has
to be built, each reference built being covered by exactly one envelope. The goal of building these
references is to have another set of wirings, that also covers all the demands, but that has a smaller
production cost than the envelope set (indeed, the give-away will be reduced, but the diversity tax
will be augmented). The references have to respect some (less than 10 for every instance) implication
and exclusion constraints for their modules (i.e., if some modules are present in a reference, others
must be too, or others cannot be). Note that the give-away can be a non-linear function, because some
modules can have different prices if they are together or not in a reference, and some groups of modules
have a fixed price if one or more modules of this group are in a reference. The resulting combinatorial
optimization problem (P ) consists in building a reference set S that minimizes the production costs,
defined as the give-away plus the diversity tax.
As the give-away is growing with the size |S| of S, and the diversity tax is decreasing with it, the
production cost is a convex function. Therefore, if this function is known, its minimum would be easy
to find. As the diversity tax is part of the given data (i.e., for each allowed value N of |S|, its associated
diversity tax is known), the remaining problem is to build the give-away function. More precisely, the
give-away has to be minimized for each possible value of |S|, where Renault imposes to have |S| ≤ 4 · |E|.
This kind of decomposition (i.e., optimizing each level independently) has been proven to be efficient for
many optimization problems. In addition, this decomposition allows Renault to have a solution for each
possible value N of |S|, which gives them more flexibility in their production afterwards, for example if
the demands change (as some instances are based on forecast demand).
Using the fact that each demand is covered by only one envelope, and that envelopes represent exclusion
constraints (i.e., the modules of any two demands covered by different envelopes are incompatible), (P )
can be decomposed into different sub-problems, one for each envelope. This can be done by grouping
the demands covered by the same envelope. Formally, for each demand d ∈ D, one and only one
envelope e ∈ E covers d. It means that a reference r cannot cover two demands that are not covered
by the same envelope. For every envelope e ∈ E , the set of demands covered by e is denoted by
De = {d ∈ D | e covers d}. As a consequence, (P ) can be decomposed into sub-problems of type (Pe)
restricted to De instead of D. The different sub–problems will only be linked by the constraint on the
total number N of references to use of the whole instance. If a solution Se is found for each (Pe) using
a number Ne of references, a solution S of (P ) is therefore S =

⋃
e Se, with

∑
eNe = N .

3 Solution methods for (P )
Two different greedy algorithms are proposed. First, the Demands Greedy Algorithm (GrD) is a bottom-
up approach that starts from the demands as initial references, and groups them two by two following
the cheapest grouping cost until the number N of references is reached. The grouping cost f g(r, r′) is the
increase of the give-away if two references r and r′ are grouped together. Second, the Envelopes Greedy
Algorithm (GrE) is a top-down approach that starts from the envelopes and creates the references by
separating the corresponding demands in two parts, following the best separation cost (ties are broken
randomly) until the number N of references is reached. The separation cost f s(r,m) is the decrease of
the give-away if a reference r containing a module m is split into two references rm and rm̄ such that:
rm covers each demand (covered by r) that contains m, and rm̄ covers each demand (covered by r) that
does not contain m. Both algorithms follow the same pattern, described in Algorithm 1. Each step is
described for GrD, and then for GrE (separated with "/") if the algorithms differ.
In order to explore more solutions, using a less deterministic constructive algorithm, a Greedy Randomi-
zed Procedure (GRP ) was developed, inspired from the Greedy Randomized Adaptive Search Procedure
(GRASP) [2]. This algorithm follows exactly the same steps as a greedy algorithm, but instead of making2



at each iteration the best possible decision, it chooses randomly one among the p best ones (parameter
tuned to 3 after preliminary experiments). This approach was tested within GrE only, because many
ties are already encountered in GrD (remind that ties are always broken randomly).

Algorithm 1 GrD (bottom-up) / GrE (top-down)

Initialization (for each e ∈ E)
1. For GrD, set Se = De / For GrE , set Se = {e}.
2. Compute all the grouping / separation costs.
3. Set fe as the: grouping cost of the pair (r, r′) of references minimizing f g (give-away augmentation)

/ separation cost of the reference r and module m maximizing f s (give-away reduction).
While the number N of references is not reached, do:

1. For the envelope e with the optimal cost fe, group / separate the corresponding references.
2. If the total number

∑
eNe of references in all the sub-problems has reached N , then stop.

3. Otherwise, update the grouping / separation costs affected by the last decision.

4 Results
Table 1 presents the results. For each instance, the characteristics (size, const, costs) are first indicated.
The size is said small if the larger sub-problem has less than 1 000 demands, medium if it has less
than 10 000 demands, and large otherwise. The column "const" only states if the instance has implica-
tion/exclusion constraints or not. The column "costs" states if there are non-linear production costs or
not (as explained in Section 2). Next, for each algorithm, three columns describe its results averaged
over ten runs. The first one gives the average percentage gap (for each possible number N of references)
with respect to the best solution value found by the best run among all the algorithms, the second one
gives the average computing time, and the third one gives the standard deviation σ (again, averaged
over the possible numbers of references).
The results show that GrD appears to almost always find the best solutions, but GrE finds solutions that
are not too far from the best ones, and in a computing time that can be up to fifty times faster. Both
GrD and GrE are robust (the average standard deviation being usually zero). Finally, GRP manages
sometimes to improve the solution of GrE , but on average only for two instances, and is less robust than
the two other algorithms (even if the deviation is not that important, it is enough to impose more than
one run in order to find the best possible solution with this algorithm).
A typical graph obtained by the three algorithms for one instance is given in Figure 1. For each allowed
number N of references, it shows the best value of the average give-away (averaged over all demands
and over 10 runs). The same conclusions can be made with this graph: GrD gives the best solutions,
and GrE and GRP give similar solutions, not too far from the ones provided by GrD.

5 Conclusion and future works
Three different constructive methods were developed to tackle the combinatorial optimization problem
(P ) faced by Renault. Its two main difficulties are the huge size of the real instances and the non-linearity
of the costs and constraints, which together make impossible to solve (P ) exactly. Nevertheless, the three
proposed algorithms offer solutions in a reasonable computing time. GrD offers the best solutions for
almost all the instances, hence it is recommended if there is no computing-time constraint. Otherwise,
GrE offers solutions with almost the same cost, but much quicker. Among the next steps, we propose
to use GrE to initialize a local search or other metaheuristics.3



TAB. 1 – Performance of the Greedy Algorithms

Instances GrD GrE GRP

size const costs %gap time σ %gap time σ %gap time σ

small no lin 0.00 0 0.00 46.57 0 0.00 43.12 1 0.16
small yes lin 0.00 1 0.00 41.07 0 0.00 56.93 0 0.79
small yes lin 0.00 4 0.00 10.10 1 0.00 8.71 1 0.47
small yes non-lin 0.00 1 0.00 1.50 1 0.00 7.19 1 0.23
small yes non-lin 0.00 2 0.00 69.41 1 0.00 81.97 1 0.31
small yes non-lin 0.00 4 0.00 69.45 1 0.00 72.89 1 0.45
small yes non-lin 0.00 10 0.00 15.15 2 0.00 17.34 2 0.18
small yes non-lin 0.00 0 0.00 362.47 0 0.00 533.29 0 0.18

medium no lin 0.00 8 0.01 6.61 1 0.00 13.02 1 0.18
medium yes lin 0.00 12 0.00 8.79 1 0.00 18.17 3 0.17
medium yes lin 0.00 30 0.04 42.55 2 0.00 30.84 2 0.15
medium yes lin 0.00 60 0.04 9.53 5 0.00 8.95 5 0.15
medium yes lin 0.00 77 0.00 8.79 28 0.00 9.24 28 0.07
medium yes lin 0.00 130 0.02 38.79 10 0.00 34.44 10 0.11
medium yes lin 0.00 149 0.02 16.82 12 0.00 21.54 13 0.14
medium yes non-lin 0.00 9 0.00 48.24 1 0.00 49.17 1 0.21

large no lin 1.16 1437 0.23 1.86 29 0.00 0.23 31 0.43
large no lin 0.00 2078 0.18 10.63 44 0.00 6.58 46 0.47
large yes lin 0.00 1738 0.06 16.57 35 0.00 15.18 35 0.18
large yes non-lin 0.00 2599 0.05 9.11 49 0.00 9.67 48 0.12

Average 0.06 418 0.03 41.70 11 0.00 51.92 11 0.26

FIG. 1 – Average give-away obtained for one instance
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