
An Exact Node-Merging Algorithm for the Single Machine
Total Tardiness Problem : Experimental Considerations

Lei Shang1, Michele Garraffa2, Federico Della Croce3 and Vincent T’kindt1

1 Université François-Rabelais de Tours, Laboratoire d’Informatique (EA 6300)
ERL CNRS OC 6305, 64 avenue Jean Portalis, 37200 Tours, France

shang, tkindt@univ-tours.fr
2 LIPN CNRS (UMR7030), Université Paris 13, Sorbonne Paris Cité

99 Avenue J-B Clément, 93430 Villetaneuse, France
garraffa@lipn.univ-paris13.fr

3 Politecnico di Torino, DAUIN, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
federico.dellacroce@polito.it

Keywords: exponential algorithms, branch and merge, single machine total tardiness.

1 Introduction
The design of exact exponential algorithms with worst-case running time guarantee for NP-hard
problems has always been a challenging issue. For NP-hard scheduling problems, the results
are particularly limited (see [5]). Here, we tackle the single machine total tardiness 1||

∑
Tj

problem where a jobset N = {1, 2, . . . , n} must be scheduled on a single machine. For each
job j, a processing time pj and a due date dj are given. The problem asks for arranging the
jobset in a sequence S = (a1, ..., an) so as to minimize T (N, S) =

∑an
j=a1

max{
∑j
i=a1

pi−dj , 0}.
The problem is NP-hard in the ordinary sense and has been extensively studied in the literature.
The current state-of-the-art exact method in practice is a Branch & Bound algorithm which
solves to optimality problems with up to 500 jobs [6]. However, considering the worst-case time
complexity, the best we can have is still the conventional Dynamic Programming algorithm
which runs in O∗(2n) in time and space. Latest theoretical developments for the problem can
be found in the survey of Koulamas [3].

Recently we have discovered some interesting structural properties in the branching tree of
the problem and an exact algorithm called Branch & Merge (BM) has been proposed and
proved to have a worst-case time complexity converging to O∗(2n) with a polynomial space
complexity [1]. In this paper we extend this theoretical result with some experimental feedback.
Some insights on the characteristics of hard instances are also provided.

2 Branch & Merge
We first recall the core part of BM [1] which relies on Property 1. Let (1, 2, . . . , n) be a LPT
(Longest Processing Time first) sequence and ([1], [2], . . . , [n]) be an EDD (Earliest Due Date
first) sequence of all jobs.

Property 1. [4] Let job 1 in LPT sequence correspond to job [k] in EDD sequence. Then,
job 1 can be set only in positions h ≥ k and the jobs preceding and following job 1 are uniquely
determined as B1(h) = {[1], [2], . . . , [k − 1], [k + 1], . . . , [h]} and A1(h) = {[h + 1], . . . , [n]}.

Property 1 naturally implies a Branch & Reduce (BR) algorithm [2]: branching the longest
job on every possible positions so as to decompose the initial problem into smaller subproblems.
In the resulting search tree, the authors found that many identical subproblems exist on specific1

tree positions and these subproblems can be “merged” systematically at each node to avoid
solving the same problems multiple times. The Merge decision is based on the dominance
relation between two search tree nodes sharing the same jobset of fixed jobs.

As an example, Figure 1 illustrates Merge on a worst-case instance where LPT=EDD, i.e.
the longest job (job 1) can be branched on any position. Node P2 = (21{3..n}), consisting
of a subproblem with jobs {3..n} to schedule after jobs 2 and 1, can be merged with P1,2 =
(12{3..n}). The resulting node P 1,2

σ will be P2 if the sequence (21) has a lower total tardiness
than (12). Note that we know exactly the position of nodes to merge, which are pretty close
in the search tree and therefore allow the Merge operations to be performed in polynomial
time and space. Note that the example here only concerns some left branches in the tree while
Merge operations can also be performed on right branches with a more complex structure.

P1 :1{2, ..., n}
P2 :21{3, ..., n}

P : {1, ..., n}

Pn

Pk :{2..k}1{k + 1..n}
PkP2

P1

P1,n

. . .

P1,kP1,2

. . .

P1,2 :12{3, ..., n}
P1,3 :132{4, ..., n}
P1,k :1{3..k}2{k + 1..n}

. . .

. . .

(a) Before Merge

P1 :1{2, ..., n}
P2 :21{3, ..., n}

P : {1, ..., n}

Pn

Pk :{2..k}1{k + 1..n}

PkP2

P1

P1,n

. . .

Pσ1,kPσ1,2

. . . Pσ1,2 :BEST(12, 21){3..n}
Pσ1,k :BEST({2..k}1, 1{3..k}2){k + 1..n}

. . .

. . .

(b) After Merge

FIG. 1: Example of Branch & Merge on some left branches

3 Experimental results
The whole mechanism of BM has been implemented and tested on instances generated in the
same way as in [6]. Before comparing it to the state-of-the-art algorithm in [6], we first describe
the latter one more clearly. That algorithm, named BR-SPM, is based on the branching
structure of BR, with the following three extra features integrated.

1. Split, which decomposes a problem according to precedence relations;

2. PosElim, which eliminates non-promising branching positions before each branching;

3. Memorization, which avoids solving a problem more than once by saving its solution to
a database (the “memory”) and retrieve it whenever the same problem appears again.

We implemented BR-SPM in the following way: on a given problem P , BR-SPM first tries
to find the solution in the memory; if failed, it applies Split to decompose P into subproblems
then solve them recursively; if Split does not decompose, PosElim is called which returns the
list of positions on which the longest job can be branched on. The branching then occurs and
the resulting subproblems are then solved recursively. Each time we solve a subproblem by
branching, the solution sequence is saved to the memory for further query. Our implementation
of BR-SPM successfully solves instances with up to 800 jobs in size, knowing that the original
program was limited to instances with up to 500 jobs due to memory size limit.

We now provide our experimental results. In order to verify the concept of Merge without
extra features, we first compare BR with BM on the hardest subset of instances of each size.
Table 1, depicting (minimum, average and maximum) CPU time, average number of Merge
hits and total number of explored nodes, shows that the Merge mechanism strongly accelerates
the solution. However BM is still limited to 50 jobs in size only.

To improve the performances, we enable Split and PosElim. The resulting algorithms are
called BR-SP and BM-SP. Now both algorithms can handle instances with up to 300 jobs (see

TMin TAvg TMax #Merge #Nodes
BR 52.0 1039.0 3127.0 0 1094033204
BM 3.0 67.6 319.0 11277311 47143367

TAB. 1: Results for instances of size 40

Table 2). Surprisingly, however, even with a considerable number of merged nodes, BM-SP
turns out to be slower than BR-SP.

TMin TAvg TMax #Merge #Nodes
BR-SP 504.0 3000.8 7580.0 0 634569859
BM-SP 521.0 3097.9 7730.0 608986 508710322

TAB. 2: Results for instances of size 300

Auxiliary tests show that Split and PosElim negatively affect the Merge mechanism. Solving
a small problem by Split, which sometimes finds directly the solution sequence according to
precedence relations, may be faster than Merge two nodes. PosElim is also powerful as the
average number of branching positions at each node after its application is approximately 2,
i.e. most positions are already eliminated before Merge. This implies that the search tree
explored by BR-SP may be even smaller than a binary tree, as there are also many nodes that
are not counted: they only have a single child node. These observations show that it is not
straightforward to combine directly the current Merge scheme with existing solving techniques.
The theoretical effectiveness and running time guarantee of Merge stays valid, however we need
to find a new way to apply it in practice.

4 Merge vs Memorization
The fundamental idea of Memorization is similar to Merge: avoid solving a problem more than
once. However, it is applied in a different way. The idea of Memorization can be summarized as
“do not solve a problem that was already solved: just retrieve the solution from database”, while
Merge requires “not to solve a problem if it is dominated by another problem on the subset of
jobs that have already been fixed”. Merge is very structural: the search tree nodes attacked by
Merge are located on specific positions in the tree; Memorization, instead, has no constraints on
the search tree nodes positions. The recursive structure of Merge allows a detailed complexity
analysis of BM yelding a worst-case running time guarantee converging to O∗(2n) and requiring
polynomial space; besides, the time complexity of BR-SPM is O∗(2.4143n) [1] and its space
requirement is exponential. If exponential memory is allowed, Memorization tends to cover
Merge in the sense that any two nodes that can be merged can also be avoided to be solved
twice by applying Memorization. and this implies that the time complexity of BR-SPM may
also tend to be O∗(2n) or possibly lower. However, the idea of Merge might still play a role
in the scenario where memory usage is limited. To verify this, some variations of Merge are
studied.

The main issue is what decision information can we get from the subset of fixed jobs in the
search tree of BR-SPM, where, for each search tree node, the emphasis is on the job inducing
the branch, which is the longest processing time job. At each branch, two subproblems (the
left one and the right one) are generated. Property 2 allows to prune one of them when some
conditions are satisfied.

Property 2. We reuse the notation in Property 1. Let job 1 be put in position h, max(k, 2) ≤
h ≤ n − 1, hence two subproblems are generated corresponding to job sets B1(h) and A1(h),
respectively. Let s be the optimal solution of the subproblem induced by jobset B1(h) ∪ {1}.

If job 1 is not the last job in s, the current node can be cut, i.e. the subproblem on A1(h) does
not need to be solved.

Proof. Omitted.

Property 2 reflects the idea of Merge: consider the example in section 2, the current node is
characterized by {2}1{3..n}. If the optimal sequence of {1, 2} is (12), then the current node
can be cut. The gain becomes interesting when |A1(h)|

|B1(h)| (or
|B1(h)|
|A1(h)| if |A1(h)| < |B1(h)|) is large.

We first test this idea on BR-SP, which can be considered as a special case of BR-SPM with
the memory size limited to 0. Table 3 shows that the new algorithm BR-SP-Cut does somehow
accelerate the solution, with lots of nodes cut. However when Memorization is enabled, BR-
SPM-Cut becomes less interesting with respect to BR-SPM, since the nodes that are cut could
also be solved immediately by fetching the solution from the memory. Therefore BR-SP(M)-
Cut are only interesting in memory limited scenarios. We also considered other variations of
Merge/Memorization that will be discussed at the conference.

TMin TAvg TMax #Cut #Nodes
BR-SP 504.0 3000.8 7580.0 0 634569859

BR-SP-Cut 494.0 2968.6 7470.0 2163175 631529558

TAB. 3: Results for instances of size 300

In conclusion, we analysed the branching tree structure of the problem and compared two
node fusion techniques, Merge and Memorization, that avoid solving identical subproblems
multiple times. We provide experimental results to show the interest of Merge since it can
be performed in polynomial time and space. However, Memorization tends to be more effec-
tive than Merge when exponential space is allowed. By carefully combining the strength of
memorization to the increased memory sizes of current computers, the size of instances that
can be solved to optimality is now pushed up from 500 to 800 jobs, thing which is also an
interesting issue to be reported. Some variations of Merge/Memorization are currently being
considered and we expect to have better results at the time of conference. Besides, as a search
tree pruning scheme, Merge may also be generalized to other problems and will most probably
fit especially to scenarios where polynomial space is required.

References
[1] L. Shang, M. Garraffa, F. Della Croce and V. T’Kindt (2016). “An Exact Exponential

Branch-and-Merge Algorithm for the Single Machine Total Tardiness Problem”, In Proc.
PMS’16, 182-185,Valencia (Espagne).

[2] F. Della Croce, M. Garraffa, L. Shang and V. T’kindt (2015), “A branch-and-reduce exact
algorithm for the single machine total tardiness problem”, In Proc. MISTA2015, 879-881,
Prague, Czech Republic.

[3] C. Koulamas (2010),“The single-machine total tardiness scheduling problem: review and
extensions”, European Journal of Operational Research, 202, 1-7.

[4] E. L. Lawler (1977), “A pseudopolynomial algorithm for sequencing jobs to minimize total
tardiness”, Annals of Discrete Mathematics 1, 331–342.

[5] C. Lenté, M. Liedloff, A. Soukhal and V. T’Kindt (2014), “Exponential Algorithms for
Scheduling Problems”, HAL, https://hal.archives-ouvertes.fr/hal-00944382.

[6] W. Szwarc, A. Grosso and F. Della Croce (2001), “Algorithmic paradoxes of the single
machine total tardiness problem”, Journal of Scheduling 4, 93–104.

	Introduction
	Branch & Merge
	Experimental results
	Merge vs Memorization

