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1 Introduction

Quadratic programming is the optimization of a quadratic objective function subject to linear
or quadratic constraints. We will deal with minimization problems with convex quadratic
objective function, linear constraints and continuous variables. When the size of the problem
is large, very often it is more convenient to take advantage of smart or ad-hoc strategies to
tackle the problem. Column generation, described for example in [3], represents one of the
most important ways to deal with large-scale problems. We will analyze the use of Simplicial
Decomposition, a column generation algorithm: we developed some techniques in order to
make it more efficient and we compared our algorithm against the state-of-the-art software
CPLEX. We will present our algorithm and show our results, obtained on portfolio optimization
problems and on more general convex quadratic problems.

2 Simplicial Decomposition

The idea behind the Simplicial Decomposition (SD) algorithm is described in [5]: in order
to solve the original problem, it is decomposed into simpler ones, which are called respec-
tively pricing and master programs, and are solved alternatively and repeatedly. The pricing
solves the original problem with a linear objective function and the master program, instead,
is a problem with the original objective function, but with lower dimension and simplified
constraints.

More specifically, starting from a single point, the domain of each master program is the
convex hull of a finite set of affinely independent points, i.e. a simplex, and these points are
the solution of the previous pricing problems: if Bk := {x1, . . . xk} is the set of points after
the kth iteration, the simplex Sk generated by these points can be represented as a convex
combination of the generators, so the dimension of the master is k � n.

On the other hand, each pricing program is linear because it minimizes the gradient of the
original objective function in the optimal point of the previous master. In this way, it obtains
a descent direction, so the new master will be able to find points with lower cost; otherwise, if
no new points are found, the algorithm terminates.

The most significant advantage is that the dimension of the master programs are always
much lower than the original one, so the overall computing time can be reduced with this
decomposition. An other extremely important characteristic of this technique is that no dual
information is necessary.



3 Instances
We wanted to tackle problems with high number of variables and relatively small number
of constraints. So, the first instances in which we have tested SD are portfolio optimization
problems in the formulation proposed by Markowitz in [4]. It has a dense positive semidefinite
objective function (the risk) and only two constraints: a lower bound µ on the expected return
and a simplex constraint:

min f(x) = xT Σx (1)
s. t. rTx ≥ µ,

eTx = 1,
x ≥ 0,

with e = {1, . . . , 1}T and x ∈ Rn. We started using some literature data and then we stressed
them, adding new values, in order to get higher dimensional instances and to be able to analyze
the behaviour of the algorithm in large-size portfolio-like instances.

Then, we decided to tackle more general problems, with higher number of constraints: re-
garding the objective function, we generated dense, positive definite matrices for the quadratic
part and randomly generated linear terms. Concerning the constraints, in order to generate
feasible problems, we chose them in two different ways: step-wise sparse constraints or random
dense ones. For each of these types, three policies for additional constraints are stated: a sim-
plex constraint, or "relaxed" simplex constraints (sum of all the variables between a minimum
and a maximum value), or no additional constraints. For each of these six types of problems,
we generated five instances with five different seeds.

The number of variables n for Portfolio Optimization Problems varies from 225 to 10980
and for the generic quadratic problems it varies between 2000 and 10000. For these problems,
moreover, the number m of constraints goes from 2 up to n/2. In particular, we divided these
problems into two categories: the ones with "low number of constraints" are made with 2, 22
and 42 constraints. The second category contains the problems with high number of constraints
and they are generated with m = n/32, n/16, n/8, n/4, n/2.

4 Setting
We compared the SD algorithm with the state-of-the-art solver CPLEX. We made some pre-
liminary tests in order to find the best options for CPLEX and we selected the sifting solver,
which is much faster than the other solvers, for our instances.

Furthermore, we introduced some modifications in the SD algorithm, both for the pricing
and for the master problems, in order to improve the convergence.

4.1 Master program
The master program can be solved in various ways: the first one that we have selected is
directly using CPLEX itself (namely SD - Cplex). Then, we developed two other methods in
order to speed up the computational time of the master program, based respectively on the
Conjugate Directions and on the Projected Gradient Methods.

We introduced an Adaptation of the (unconstrained) Conjugate Directions Method (SD -
ACDM) in order to exploit the particular structure of the simplices that are generated. Indeed,
they are nested one in the following, so the informations used to solve each master program
can help to solve the next one in a single iteration. So, we introduced a significant warm start,
that could not be present with CPLEX.

More specifically, we exploited the property that, for every master program, the search for
the optimum starts from a point in the interior of a facet of its domain. So we developed and



proved the convergence of a method that proceeds in this way: it starts from the previous
optimum, it finds the new conjugate direction, it determines the optimum along this new
line with unconstrained techniques (described, for example, in [2]) and, if needed, it projects
the point onto the simplex, in order to get the constrained optimal point. In this case the
intersection with the boundary of the simplex is found and the method finds the optimal point
in the intersection face.

The projected gradient method (SD - PG) that we propose is an adaptation of the Spectral
Projected Gradient Method described in [1].

4.2 Pricing options
With respect to the pricing, it is always solved by CPLEX, which is one of the best solvers for
linear programs; however, we developed some features in order to improve the performance of
the classic algorithm.

We introduced some cuts in order to reduce the number of points, i.e. iterations of SD,
that are to be generated in order to reach the global optimum. This is done exploiting the
informations on the previous iterations.

The second strategy is the use of an early stopping in the pricing problem: this reduces the
computational time of the pricing and is still sufficient to provide a descent direction at each
cycle, which is enough to guarantee the convergence of the algorithm.

Finally, we tested the use of the sifting solver for CPLEX.
We analyzed all the eight combinations of these three options in order to find the one that

solves best the instances.

5 Results
The results show, for all the different problems, that SD improves the computational time spent
by CPLEX. More in detail, when the size is small, Cplex is fast and only a few options of SD are
better. But as the size increases, the improvement is more and more evident and all the methods
of SD with all the options are much better than the reference solver. Deeper classifications can
be shown in the three cases of portfolio optimization instances, generic quadratic instances with
low number of constraints and general quadratic problems with high number of constraints. In
particular in the last case, the differences among the six different choices of constraint matrix
become significant: while some classes of problems are too complicated and none of the solvers
can find the optimum within the imposed timelimit, in other instances, CPLEX reaches the
time limit and some SD algorithms reach the solution in a lower time. In Table (1) the average
CPU time (in seconds) elapsed with some different solvers is shown. For the case in which the
number m of constraints is high, the average results are not impressive: this is due to the fact
that the problems with completely random constraints increase a lot the computing time of
SD, because the pricing is much slower. In order to show the results for the other instances, we
added a new line, specific for the problems generated with stepwise constraints with high values
of m. The ∗ means the combination of the best master and pricing options for each algorithm.
The number of problems that have not solved within the time limit, whose computational
times have been excluded from the average, is in brackets. N is the total number of instances.

Cplex SD Cplex SD Cplex* SD ACDM* SD PG* N
Portfolio 9.58 1.76 1.76 0.87 0.93 40
Low m 13.50 5.36 4.76 2.30 2.34 450
High m 65.66 (146) 64.37 (215) 57.9 (218) 54.79 (100) 29.71 (136) 750

High m - Step 33.38 (31) 11.98 (26) 11.92 (26) 9.41 (29) 10.79 (33) 375

TAB. 1: CPU time (in seconds) of Cplex and of SD with the best options



Another analysis can be carried out, on the subdivision of the total computing time among
the master and the pricing solvers and the preprocessing time. In Table (2) the results are
shown for general quadratic problems with low number of constraints. The average times are
represented. The last two columns contain the number of iterations needed to achieve the
solution and the dimension of the last master program, which is the dimension of the optimal
face in the original domain.

Total Master Pricing Number Dimension
time updating solving updating solving iterations last master

SD - Cplex 5.93 1.38 3.21 0.53 0.81 180.04 177.04
SD - ACDM 3.60 1.08 0.68 0.41 1.42 176.02 136.93
SD - PG 3.24 1.21 0.38 0.47 1.18 152.74 129.55

TAB. 2: Averaged CPU time (in seconds), instances with low m.

From this second table it is clear that the two methods that we have developed have improved
sensibly the computational time for the master. However, the time spent for solving the pricing
remains substantially unchanged, because it depends mainly on the number of iterations that
are computed.

Another relevant point is that there are some differences among the number of iterations and
the dimension of the last master program. Although the errors between the solutions of SD
and of the reference solver are always very low (relative error on the solution lower than 10−5),
the two algorithms that we introduced tend to find sparser representations of the optimal face
and the difference in time between SD with ACDM and SD with PG depends mostly on the
difference in the number of iterations, so of pricing problems, to be solved in the two cases.

6 Conclusions and perspectives
The results that we have reported show that Simplicial Decomposition, with some suitable
modifications, is a really competitive algorithm and often improves dramatically the CPU
time of the state of the art solver, for large-size instances.

A possible further improvement could be the development of some techniques that allow us
to solve the pricing faster: indeed, the highest part of the computational time for each iteration
is due to solve this problem.

These good results suggest that this method could be used in a more general setting. For
example, in mixed integer convex programming, this algorithm can be inserted profitably in a
branch and bound scheme.
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