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1 Introduction
Many countries have implemented kidney exchange programmes for transplanting patients

with kidney failure (see e.g. [1]). These programmes allow a patient with a willing donor,
physiologically incompatible with the patient, to participate in an exchange with other patient-
donor pairs. A patient can then benefit from the kidney of a donor in the pool if they are found
to be compatible. The problem can be represented by a directed graph G = (V,A) where a node
represents a patient-donor pair and a directed edge from node v1 to v2 represents a compatibility
between the donor of pair v1 and the patient of pair v2. The optimisation problem consists in
finding an optimal match between patients and donors with respect to a numerical criterion
such as, e.g., the total number of transplants or the total number of transplants with identical
blood type. The solution to the problem consists in node sets forming disjoint cycles, such that
when a donor is operated, his patient receives a kidney too.

A concrete problem that arises after providing an optimal matching is due to the possibility
of either a node failure (a patient or its donor pulls back from the program) or an edge failure.
This last possibility comes from the fact that edges are built based on preliminary compatibility
tests. Once a matching is approved, more extensive tests are performed between the selected
donors and patient which sometimes reveal incompatibility. A probability of failure can thus
be attributed to any node and edge in the graph. The problem then becomes stochastic and we
must consider the expected number of transplants of a given solution. Different works exist to
tackle a stochastic version of the Kidney Exchange Problem (KEP). For example [2] takes into
account the probabilities of failure to compute the maximum expected number of transplants
with different possibilites of recourse scenarios in case of failures. This approach, however, does
not take into account any measure of robustness for the selected solution. Solution robustness
is handled in [4], a drawback being that in such cases one only considers the worst scenario,
an extremely conservative assumption. A good measure of the potential loss in the worst cases
is known under the name of Conditional Value at Risk (CVaR), which represents the average
value of the potential loss over a fraction of the worst scenarios [3]. Besides taking into account
the potential loss of a solution, CVaR has good mathematical properties which are valuable
for solving mathematical stochastic optimisation models.

2 Stochastic models for KEP including CVaR
A classic formulation of KEP relies on identifying the set C of potential cycles (of maximum

size k) inside the graph. A binary variable xc is introduced for each cycle c ∈ C to decide if a



cycle should be selected. To model stochasticity, we add to the base model a set of scenarios
S, where each s ∈ S is defined by a certain set of nodes and arcs failing (and thus potential
cycles being cancelled). A weight for each cycle wsc is equal to the number of transplants for
cycle c in scenario s. We also consider a recourse policy, not investigated in [2], that keeps the
cycles that did not fail untouched while reassigning the nodes of failed cycles to alternative
cycles. The stochastic model with recourse can be modelled as :

maxE[Q(x,w)] (1)∑
c∈C: i∈V (c)

xc ≤ 1, i ∈ V, (2)

Q(x,ws) = max
∑
c∈C

wscy
s
c , (3)

∑
c∈C: i∈V (c)

ysc ≤ 1, s ∈ S, i ∈ V, (4)

ysc ≥ xc, s ∈ S, c ∈ C : wsc > 0, (5)

with ysc as recourse variables, Q(x,w) as the recourse function and V (c) as the set of nodes in
cycle c ∈ C. Even though the number of scenarios is exponential in the size of the graph, since
|S| = 2|V |+|A|, there are ways to decompose the graph into subcomponents in the recourse
subproblem [2].

In order to introduce a certain measure of robustness in the model, we introduce CVaR in
different ways, e.g. as a constraint or as a second objective. A useful mathematical formulation
for CVaR is given by [3] :

CVaRα(x) = min
ζ

[Fα(x, ζ)] , (6)

Fα(x, ζ) = ζ + 1
1− αE [max(0, L(x,w)− ζ)] , (7)

= ζ + 1
1− α

∑
s∈S

ps(max(0, L(x,ws)− ζ). (8)

The function L(x,ws) represents the loss of solution x in scenario s compared to the case
without failure and 1 − α represents the fraction of the worst scenarios over which we com-
pute CVaR. Since Fα is a sum of non-linear functions, the model is usually linearised by
introducing a continous positive variable ηs for each scenario. The loss function is simply
the difference between the best possible outcome for solution x and the recourse result :
L(x,ws) =

∑
c∈C w

s
cxc − Q(x,ws). The resulting model can in certain cases be linearised to

obtain a MIP that we can try to solve either exactly through the use of a linear solver or by
heuristic approaches.

We consider different types of recourse policies and sampling methods over the scenarios in
order to solve KEP and compare the solutions for the different recourse policies, with exact or
heuristic methods.
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