On the b-domatic partition of some graphs

Mohammed Benatallah ${ }^{1}$, Noureddine Ikhlef Eschouf ${ }^{2}$, Miloud Mihoubi ${ }^{3}$
Mots-clés : domatic number, b-chromatic number, b-domatic number.

1 Introduction

Let $G=(V, E)$ be a finite, simple and undirected graph with vertexset V and edge-set E. We call $|V|$ the order of G and denote it by n. For any nonempty subset $A \subset V$, let $G[A]$ denote the subgraph of G induced by A. For any vertex v of G, the neighborhood of v is the set $N_{G}(v)=\{u \in V(G) \mid(u, v) \in E\}$ and the closed neighborhood of v is the set $N_{G}[v]=N_{G}(v) \cup\{v\}$. Let $\Delta(G)$ (respectively, $\delta(G)$ be the maximum (respectively, minimum) degree in G. Through this paper, the notations P_{n}, C_{n}, and K_{n} always denote a path, a cycle, and a complete graph of order n, respectively, while $K_{p, q}(p \geq q)$ denotes a complete bipartite graph with partite sets of sizes p, q. For further terminology on graphs we refer to the book by Berge [2].
A set $S \subseteq V$ is called a dominating set if every vertex in $V \backslash S$ is adjacent to some vertex in S. The minimum cardinality of a dominating set is called the domination number and is denoted by $\gamma(G)$. By analogy to the concept of chromatic partition, Cockayne and Hedetniemi [3] introduced the concept of domatic partition of a graph. A partition \mathcal{P} in which each of its classes is a dominating sets is called a domatic partition of G. The domatic number $d(G)$ is defined as the largest number of sets in a domatic partition. The authors of [3] showed that

$$
\begin{equation*}
d(G) \leq \min \left\{\frac{n}{\gamma(G)}, \delta(G)+1\right\} . \tag{1}
\end{equation*}
$$

For some other results on domatic partition see [1, 4, 6].
In [5], O. Favaron introduced the b-domatic number by considering a new type of domatic partition. As defined in [5], a domatic partition \mathcal{P} of G is b-domatic if no larger domatic partition π can be obtained by transferring some vertices of some classes of \mathcal{P} to form a new class. Formally, a partition $\mathcal{P}=\left\{\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{k}\right\}$ is a b-domatic partition of G if there do not exist k non-empty subsets $\pi_{i} \subseteq \mathcal{C}_{i}, i \in\{1, \ldots, k\}$ with strict inclusion for at least one non-empty subset $\left(\mathcal{C}_{i} \backslash \pi_{i} \neq \emptyset\right)$ for which $\pi=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{k}, V \backslash \bigcup_{i=1}^{k} \pi_{i}\right\}$ is domatic partition of G. The minimum cardinality of a b-domatic partition of G is called the b-domatic number and is denoted by $b d(G)$.

It is observed in [5] that if $\delta(G)=0$, then $\{V(G)\}$ is the unique domatic partition and so $b d(G)=d(G)=1$. For this, all graphs considered in this paper are without isolated vertices. Many other properties of domatic and b-domatic partitions were given in [5]. In particular, it was observed that for any graph G with degree minimum $\delta(G) \geq 2$,

$$
\begin{equation*}
2 \leq b d(G) \leq d(G) \tag{2}
\end{equation*}
$$

In this paper, we investigate new properties of a b-domatic partition. Firstly, we give necessary and sufficient conditions for which a given domatic partition of a graph G is b-domatic. Next, we present some classes of graphs for which $b d(G)=2$ and $b d(G)=\delta(G)+1$. Other results are given for particular classes of graphs.

2 Mains results

Theorem 1 Let \mathcal{P} be a domatic partition of a graph $G=(V, E)$. Then \mathcal{P} is b-domatic if and only if there exists a vertex $x \in V$ such that each vertex of $N_{G}[x]$ is either isolated in its class or has a private neighbor with respect to its class.

Corollary 2 Let \mathcal{P} be a domatic partition of a graph G. If every vertex x of G is either isolated in its class or has a private neighbor with respect to its class of x, then \mathcal{P} is b-domatic.

Proposition 1 Let H be a graph. If G is the prism of H or the complementary prism of H, then $b d(G)=2$.

Corollary 3 The Petersen graph P satisfies $b d(P)=2$.

Proposition 2 Let G be a block graph of minimum degree $\delta(G)$. Then $b d(G)=$ $\delta(G)+1$.

Theorem 4 Let $G=(V, E)$ be a r-regular graph and $\mu=\max \left\{\left|S_{x}\right|: x \in\right.$ $V(G), S_{x}$ is a maximum independent set of $\left.G[N(x)]\right\}$. If $d(G)=r+1$, then $b d(G) \leq r-\mu+2$.

A vertex x of a graph G is universal if it is adjacent to every other vertex of G. It was showed in [4] that if x is a universel vertex of a graph G, then $d(G)=d(G-x)+1$. We give her a similar result for the b-domatic number.

Proposition 3 If x is universal vertex in G, then $b d(G)=b d(G \backslash x)+1$.

Références

[1] S. Arumugam, K. Raja Chandrasekar, Minimal dominating sets in maximum domatic partitions, Australasian Journal of Combinatorics, V. 52 (2012), Pages 281-292.
[2] C. Berge. Graphs. North Holland, 1985.
[3] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247-261.
[4] G. J. Chang. The domatic number problem, Discrete Mathematics 125 (1994) 115-122.
[5] O. Favaron. The b-domatic number of a graph, Discussiones Mathematicae, Graph Theory 33(2013)747-757.
[6] S-H. Poon, W. C-K. Yen, C-T. Ung, Domatic Partition on Several Classes of Graphs, Combinatorial Optimization and Applications, V. 7402 of the series Lecture Notes in Computer Science pp 245-256.

