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1 Introduction
In the double TSP with multiple stacks (DTSPMS), introduced in [4], n items have to be picked
up in one city, stored in a vehicle having s identical stacks, and delivered to n customers in
another city. Both cities are modeled by the complete digraph D = (V, A) with V = {0, . . . , n}
and A = {(i, j) : i 6= j ∈ V }, where 0 represents a depot. The pickup (resp. delivery) city
then corresponds to a cost vector c1 ∈ R|A| (resp. c2 ∈ R|A|) on the arcs of D. Item i has
to be picked up from vertex i of the first city, and delivered to vertex i of the second city.
The pickup phase has to be completed before the delivery phase starts. Each phase consists
in a Hamiltonian circuit performed by the vehicle which starts from the depot and visits the
remaining n vertices of the graph exactly once before coming back to the depot. When a
new item is picked up, it is stored on the top of a stack of the vehicle and no rearrangement
of the stacks is allowed. During the delivery circuit the stacks are unloaded by following a
last-in-first-out policy: only the items currently on the top of their stack can be delivered.
The goal is to find a pair of s-consistent Hamiltonian circuits C1 (for the pickup) and C2 (for
the delivery) whose cost c1(C1) + c2(C2) is minimum — a pair of Hamiltonian circuits being
s-consistent if a vehicle with s stacks can perform both while satisfying the last-in-first-out
policy. We introduce an integer linear programming formulation for this problem and link its
integer hull to a specific ATSP polytope as well as to a specific set covering polytope.

2 Formulation of the DTSPMS
Every Hamiltonian circuit H of D corresponds to a solution (x, y) of the following formulation,
see [3] and the references therein:∑

j∈V \{i}
xij = 1 for all i ∈ V, (1)

∑
i∈V \{j}

xij = 1 for all j ∈ V, (2)

yij + yji = 1 for all distinct i, j ∈ V \ {0}, (3)
yij + yjk + yki ≥ 1 for all distinct i, j, k ∈ V \ {0}, (4)

xij ≤ yij for all distinct i, j ∈ V \ {0}, (5)
yij ∈ {0, 1} for all distinct i, j ∈ V \ {0}, (6)
xij ∈ {0, 1} for all distinct i, j ∈ V. (7)

Above, xij = 1 whenever arc (i, j) is in H and yij = 1 whenever i precedes j in H (assuming
that 0 is the first vertex). By using arc and precedence variables x1, y1 (resp. x2, y2) with



the same meaning as above for the pickup (resp. delivery) network, it can be shown that the
solutions to the DTSPMS are described by the following formulation, see e.g. [1]:

(xt, yt) satisfies (1)–(7) for t = 1, 2, (8)
s∑

i=1
(y1

vivi+1 + y2
vivi+1) ≥ 1 for all distinct v1, . . . , vs+1 ∈ V \ {0}. (9)

Polyhedral Results
Throughout, DTSPMSn,s denotes the convex hull of the solutions to (8)–(9) and ATSPn

denotes the convex hull of the solutions to (1)–(7). The valid inequalities for ATSPn presented
in [3] are also valid for DTSPMSn,s, see [1]. Moreover, every facet of ATSPn gives two facets
of DTSPMSn,s, as expressed in the following theorem.
Theorem 1 ([1]) For n ≥ 5 and s ≥ 2, if ax + by ≥ c defines a facet of ATSPn, then
axt + byt ≥ c defines a facet of DTSPMSn,s, for t = 1, 2.

Theorem 1 characterizes a super-polynomial number of “routing” facets of DTSPMSn,s,
see the discussion in [1]. When focusing on the “consistency” requirement of the problem, we
consider the polytope SCn,s = conv{(y1, y2) ∈ {0, 1}n(n−1) × {0, 1}n(n−1) : (9) are satisfied}.
The latter is a set covering polytope, that is a polytope of the form conv{x ∈ {0, 1}d : Ax ≥ 1},
with A being a 0,1-matrix. Using this property one can show the following result (where
inequalities that consist in 0,1 bounds on the variables are called trivial).
Proposition 1 ([2]) Every non-trivial facet-defining inequality of SCn,s is of the form ay1 +
ay2 ≥ b, where ay ≥ b is a non-trivial facet-defining inequality of the polytope RSCn,s =
conv{y ∈ {0, 1}n(n−1) :

∑s
i=1 yvivi+1 ≥ 1 for all distinct v1, . . . , vs+1 ∈ V \ {0}}.

In the case of the double TSP with two stacks, RSCn,2 can be expressed is the vertex cover
polytope of the graph Gn = (U, E) whose vertices are uij for all distinct i, j ∈ V \ {0} and the
edges are {uij , ujk} for all distinct i, j, k ∈ V \ {0}, see [2]. By defining an odd hole of Gn as a
vertex subset inducing a chordless cycle as a subgraph, we hence obtain the following corollary.
Corollary 1 Inequalities y1(H)+y2(H) ≥ |H|+1

2 for all odd holes H of Gn, are valid for DTSPMSn,2.

Conclusions
We derived links between a polytope describing the double TSP with multiple stacks and a
specific ATSP polytope as well as a specific set covering polytope. Our results are possibly
exploitable in an efficient computational framework, see [1, 2].
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