Polyhedral Results on the Double TSP with Multiple Stacks

Michele Barbato ${ }^{1}$, Roland Grappe ${ }^{1}$, Mathieu Lacroix ${ }^{1}$, Roberto Wolfler Calvo ${ }^{1}$
Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS (UMR 7030),
F-93430, Villetaneuse, France
\{michele.barbato, roland.grappe, mathieu.lacroix, roberto.wolfler\}@lipn.univ-paris13.fr

Keywords : double traveling salesman problem with multiple stacks, polytope, facet, set covering, vertex cover, odd hole.

1 Introduction

In the double TSP with multiple stacks (DTSPMS), introduced in [4], n items have to be picked up in one city, stored in a vehicle having s identical stacks, and delivered to n customers in another city. Both cities are modeled by the complete digraph $D=(V, A)$ with $V=\{0, \ldots, n\}$ and $A=\{(i, j): i \neq j \in V\}$, where 0 represents a depot. The pickup (resp. delivery) city then corresponds to a cost vector $c^{1} \in \mathbb{R}^{|A|}$ (resp. $c^{2} \in \mathbb{R}^{|A|}$) on the arcs of D. Item i has to be picked up from vertex i of the first city, and delivered to vertex i of the second city. The pickup phase has to be completed before the delivery phase starts. Each phase consists in a Hamiltonian circuit performed by the vehicle which starts from the depot and visits the remaining n vertices of the graph exactly once before coming back to the depot. When a new item is picked up, it is stored on the top of a stack of the vehicle and no rearrangement of the stacks is allowed. During the delivery circuit the stacks are unloaded by following a last-in-first-out policy: only the items currently on the top of their stack can be delivered. The goal is to find a pair of s-consistent Hamiltonian circuits C_{1} (for the pickup) and C_{2} (for the delivery) whose cost $c^{1}\left(C_{1}\right)+c^{2}\left(C_{2}\right)$ is minimum - a pair of Hamiltonian circuits being s-consistent if a vehicle with s stacks can perform both while satisfying the last-in-first-out policy. We introduce an integer linear programming formulation for this problem and link its integer hull to a specific ATSP polytope as well as to a specific set covering polytope.

2 Formulation of the DTSPMS

Every Hamiltonian circuit H of D corresponds to a solution (x, y) of the following formulation, see [3] and the references therein:

$$
\begin{array}{rll}
\sum_{j \in V \backslash\{i\}} x_{i j} & =1 & \text { for all } i \in V, \\
\sum_{i \in V \backslash\{j\}} x_{i j} & =1 & \text { for all } j \in V, \\
y_{i j}+y_{j i} & =1 & \text { for all distinct } i, j \in V \backslash\{0\}, \\
y_{i j}+y_{j k}+y_{k i} & \geq 1 & \text { for all distinct } i, j, k \in V \backslash\{0\}, \\
x_{i j} & \leq y_{i j} & \text { for all distinct } i, j \in V \backslash\{0\}, \\
y_{i j} \in\{0,1\} & \text { for all distinct } i, j \in V \backslash\{0\}, \\
x_{i j} \in\{0,1\} & \text { for all distinct } i, j \in V \tag{7}
\end{array}
$$

Above, $x_{i j}=1$ whenever arc (i, j) is in H and $y_{i j}=1$ whenever i precedes j in H (assuming that 0 is the first vertex). By using arc and precedence variables x^{1}, y^{1} (resp. x^{2}, y^{2}) with
the same meaning as above for the pickup (resp. delivery) network, it can be shown that the solutions to the DTSPMS are described by the following formulation, see e.g. [1]:

$$
\begin{array}{ll}
\left(x^{t}, y^{t}\right) \text { satisfies }(1)-(7) & \text { for } t=1,2, \\
\sum_{i=1}^{s}\left(y_{v_{i} v_{i+1}}^{1}+y_{v_{i} v_{i+1}}^{2}\right) \geq 1 & \text { for all distinct } v_{1}, \ldots, v_{s+1} \in V \backslash\{0\} \tag{9}
\end{array}
$$

Polyhedral Results

Throughout, $\operatorname{DTSPM} S_{n, s}$ denotes the convex hull of the solutions to (8)-(9) and $A T S P_{n}$ denotes the convex hull of the solutions to (1)-(7). The valid inequalities for $A T S P_{n}$ presented in [3] are also valid for $\operatorname{DTSPM} S_{n, s}$, see [1]. Moreover, every facet of $A T S P_{n}$ gives two facets of $\operatorname{DTSPM} S_{n, s}$, as expressed in the following theorem.
Theorem 1 ([1]) For $n \geq 5$ and $s \geq 2$, if $a x+b y \geq c$ defines a facet of ATSP P_{n}, then $a x^{t}+b y^{t} \geq c$ defines a facet of DTSPM $S_{n, s}$, for $t=1,2$.

Theorem 1 characterizes a super-polynomial number of "routing" facets of $\operatorname{DTSPM} S_{n, s}$, see the discussion in [1]. When focusing on the "consistency" requirement of the problem, we consider the polytope $S C_{n, s}=\operatorname{conv}\left\{\left(y^{1}, y^{2}\right) \in\{0,1\}^{n(n-1)} \times\{0,1\}^{n(n-1)}:(9)\right.$ are satisfied $\}$. The latter is a set covering polytope, that is a polytope of the form $\operatorname{conv}\left\{x \in\{0,1\}^{d}: A x \geq \mathbf{1}\right\}$, with A being a 0,1 -matrix. Using this property one can show the following result (where inequalities that consist in 0,1 bounds on the variables are called trivial).
Proposition 1 ([2]) Every non-trivial facet-defining inequality of $S C_{n, s}$ is of the form ay ${ }^{1}+$ $a y^{2} \geq b$, where $a y \geq b$ is a non-trivial facet-defining inequality of the polytope $R S C_{n, s}=$ conv $\left\{y \in\{0,1\}^{n(n-1)}: \sum_{i=1}^{s} y_{v_{i} v_{i+1}} \geq 1\right.$ for all distinct $\left.v_{1}, \ldots, v_{s+1} \in V \backslash\{0\}\right\}$.
In the case of the double TSP with two stacks, $R S C_{n, 2}$ can be expressed is the vertex cover polytope of the graph $G_{n}=(U, E)$ whose vertices are $u_{i j}$ for all distinct $i, j \in V \backslash\{0\}$ and the edges are $\left\{u_{i j}, u_{j k}\right\}$ for all distinct $i, j, k \in V \backslash\{0\}$, see [2]. By defining an odd hole of G_{n} as a vertex subset inducing a chordless cycle as a subgraph, we hence obtain the following corollary.
Corollary 1 Inequalities $y^{1}(H)+y^{2}(H) \geq \frac{|H|+1}{2}$ for all odd holes H of G_{n}, are valid for DTSPMS $S_{n, 2}$.

Conclusions

We derived links between a polytope describing the double TSP with multiple stacks and a specific ATSP polytope as well as a specific set covering polytope. Our results are possibly exploitable in an efficient computational framework, see [1, 2].

References

[1] Barbato, M. and Grappe, R. and Lacroix, M. and Wolfler Calvo, R.: Polyhedral results and a branch-and-cut algorithm for the double traveling salesman problem with multiple stacks. Discrete Optimization 21, 25-41 (2016)
[2] Barbato, M. and Grappe, R. and Lacroix, M. and Wolfler Calvo, R.: A Set Covering Approach for the Double Traveling Salesman Problem with Multiple Stacks. Lecture Notes in Computer Science, Vol. 9849 pp. 260-272 (2016)
[3] Gouveia, L., Pesneau, P.: On extended formulations for the precedence constrained asymmetric traveling salesman problem. Networks 48, 77-89 (2006)
[4] Petersen, H.L., Madsen, O.B.G.: The double travelling salesman problem with multiple stacks - Formulation and heuristic solution approaches. European Journal of Operational Research 198, 139-147 (2009)

