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1 Introduction
Lot-sizing optimization problems appear in a wide range of applications where products have

to be made to attend demands along a planning horizon. Let us consider first the classical form
of the lot-sizing problem. Let {1, . . . , n} be a finite planning horizon. For each time period
i = 1, . . . , n, we are given a unitary holding cost hi, a unitary shortage cost pi, a unitary
production cost ci, a fixed cost fi, and a demand di. Then, for each time period i, xi ≥ 0
represents the production, si ≥ 0 the stock, ri ≥ 0 the shortage, and yi is a binary variable
equal to 1 iff production takes place in the period. The problem is modeled as follows.

min
n∑
i=1

(cixi + fiyi + hisi + piri)

LSP s.t si+1 = xi − di + si − ri−1 + ri i = 1, . . . , n, (1)
xi ≤Myi i = 1, . . . , n, (2)
y ∈ {0, 1}n, x, s, r ≥ 0.

The cost functions considers the sum of the holding costs, shortage costs, production costs
and fixed costs. Constraints (1) are equilibrium constraints linking the production, stock and
shortage variables. Constraints (2) state that if we produce in a period, then we must pay a
fixed cost, where M is a large predefined value.

In practical lot-sizing problems, the future demands are usually not known with precision
until the current period is reached. In this work, we focus on the robust counterpart of LSP,
therefore assuming that the demand uncertainty is modeled by a given polytope. This model,
used in [6, 2, 4, 5], among many others, is relevant when historical data are not accurate enough
to draw probabilistic distributions of the uncertain demands. While the robust static problems,
where decisions are taken before revealing the uncertain parameters remain tractables, the si-
tuations with adjustable problems is far more complex. Adjustable robust optimization problems
suppose that the uncertainty is revealed as time goes and one can adjust the values of some of
the decision variables according to the current knowledge of the uncertain parameters. Hence,
the adjustable optimization variables become functions of the uncertain parameters.

Robust lot-sizing problems can be classified into essentially two families of problems. In the
first family, the production decisions do not depend on the uncertainty ; only the holding and
shortage costs are adjustable. While NP-hard, this family of problems has been solved exactly
in some cases using decomposition techniques [6, 5], or approximately using affine decision
rules [2]. The second family considers that all optimization variables are adjustable, including



production variables. Besides being NP-hard, the latter family of problems cannot be solved
exactly, unless for toy problems, and the litterature only contains bounding approaches [2, 7].

This work contributes to the solution of both families of problems. In Section 2, we introduce
formally the robust lot-sizing problem and the budgeted uncertainty polytope from [3]. In
Section 3, we study the version with fixed production. We focus on the problem where the
demand uncertainty is described by the budgeted uncertainty introduced in [3]. We propose a
row-and-column generation algorithm for the problem and formulate the separation problem
as dynamic program running in pseudo-polynomial time. In Section 4, we study the version
with adjustable production. We propose a new lower bound inspired by the perfect information
relaxation in stochastic programming. We show that the resulting optimization problem can
be solved in polynomial time in several cases. For brevity, the proofs and numerical results are
not reported here and we refer the interested reader to [1] and [8].

2 Robust lot-sizing
We assume that the demands are not known with precision and vary around their nominal

values. Specifically, we assume here that the vector of demands d is given by di(ξ) = d̄i + d̂iξi,

where di represents the nominal demand in period i, d̂i represents the maximum allowed
demand deviation in period i, and ξ can take any value in the polytope defined by UΓ ≡
{ξ ∈ Rn : −1 ≤ ξ ≤ 1,

∑
|ξi| ≤ Γ} . We introduce below the adjustable robust counterpart of

LSP where the production can be adjusted to past demand realizations. Specifically, we let xi(ξ)
be the real variable stating how much good is produced in period i for scenario ξ, while the
binary variable yi(ξ) is equal to 1 iff some production occurs in period i for scenario ξ. Hence,
x and y can be interpreted as functions from UΓ to Rn+ and {0, 1}n, respectively. Notice that,
for each time period i, x and y must depend only on the demand revealed up to time period
i. This is modeled by the non-anticipativity constraints

xi(ξ) = xi(ξ′) and yi(ξ) = yi(ξ′), ∀ξ, ξ′ ∈ UΓ,Proj[1...i](ξ) = Proj[1...i](ξ′),

where Proj[1...i](ξ) denotes the projection of ξ on its first i components. Substituting the holding
and shortage variables s(ξ) and r(ξ) through the robust counterpart of constraints (1), one
readily verifies that the total cost of a production plan given by x and y is

max
ξ∈UΓ

n∑
i=1

(
cixi(ξ) + fiyi(ξ) + max

{
hi

(
i∑

j=1
ξj −

i∑
j=1

xj(ξ)
)
,−pi

(
i∑

j=1
ξj −

i∑
j=1

xj(ξ)
)})

(3)

To simplify the presentation of the algorithm presented in the next section, we split the
total cost (3) into the production costs in one side, and the shortage and holding cost in the
other side. Specifically, we introduce a set of adjustable variables ϕi(ξ) which represent, for
each period i and scenario ξ, the maximum between the holding cost and the shortage cost.

min max
ξ∈UΓ

n∑
i=1

(ϕi(ξ) + cixi(ξ) + fiyi(ξ))

UΓ-LSP s.t. ϕi(ξ) ≥ hi

 i∑
j=1

ξj −
i∑

j=1
xj

 , ξ ∈ UΓ, i = 1, . . . , n, (4)

ϕi(ξ) ≥ −pi

 i∑
j=1

ξj −
i∑

j=1
xj

 , ξ ∈ UΓ, i = 1, . . . , n (5)

xi(ξ) ≤Myi(ξ), i = 1, . . . , n, (6)
xi(ξ) = xi(ξ′)
yi(ξ) = yi(ξ′)

, ξ, ξ′ ∈ UΓ,Proj[1...i](ξ) = Proj[1...i](ξ′), i = 1, . . . , n, (7)

y(ξ) ∈ {0, 1}n, x(ξ), ϕ(ξ) ≥ 0, ξ ∈ UΓ.



Constraints (4) and (5) impose that ϕ models the aforementioned costs. Constraints (7) are
the non-anticipativity constraints mentioned previously. The other constraints are similar to
those of problem LSP.

3 Fixed production
We assume in this section that x and y do not depend on ξ, so that the non-anticipativity

constraints (7) can be relaxed. Introducing an auxiliary variable θ to represent max
ξ∈UΓ

n∑
i=1

ϕi(ξ),

we obtain the following MILP denoted UΓ-LSP-fix.

min θ +
n∑
i=1

(cixi + fiyi)

UΓ-LSP-fix s.t. θ ≥
n∑
i=1

ϕi(ξ), ξ ∈ UΓ, (8)

ϕi(ξ) ≥ hi

 i∑
j=1

ξj −
i∑

j=1
xj

 , ξ ∈ UΓ, i = 1, . . . , n, (9)

ϕi(ξ) ≥ −pi

 i∑
j=1

ξj −
i∑

j=1
xj

 , ξ ∈ UΓ, i = 1, . . . , n (10)

xi ≤Myi, i = 1, . . . , n,
y ∈ {0, 1}n, x, ϕ ≥ 0

Problem UΓ-LSP-fix contains infinite numbers of variables and constraints. Hence, we tackle
the problem through the following row-and-column generation algorithm. Let U∗ be a finite
subset of UΓ. Given a feasible solution (x∗, θ∗) to U∗-LSP-fix, one checks the feasibility of
(x∗, θ∗) for UΓ-LSP-fix by solving the adversarial problem

max
ξ∈UΓ

n∑
i=1

max
{
hi

(
i∑

j=1
ξj −

i∑
j=1

x∗j

)
,−pi

(
i∑

j=1
ξj −

i∑
j=1

x∗j

)}
; (11)

we denote the objective function of (11) as g(ξ) for short. Let ξ∗ be the optimal solution for the
adversarial problem. If g(ξ∗) > θ∗, then U∗ ← U∗ ∪ {ξ∗}, and the corresponding optimization
vector ϕ(ξ∗) and constraints (8)–(10) are added to U∗-LSP-fix. We can prove the following.

Theorem 1. Problem (11) can be solved by a dynamic programming algorithm in O(n2Γ max
1≤i≤n

d̂i).

Theorem 2. Suppose that min{hn, pn} > 0 and that

2 max
i=1,...,n

{hi, pi}

min{hn, pn}
≤ P(n)

where P(n) is a polynomial in n. There exists a FPTAS for (11). Moreover, if f = 0 then
there also exists a FPTAS for UΓ-LSP .

In addition to these theoretical results, our numerical results (reported in [1]) show that the
row-and-column generation algorithm performs very well on instances from the literature.

4 Adjustable production
We consider in this section the problem where x is a vector of adjustable variables and

that U ⊂ Rn+ is an arbitrary polytope defined by m inequalities. Since the non-anticipativity



constraints (7) make the problem untractable, they have been removed from U -LSP, yielding
the perfect information relaxation.

min θ + max
ξ∈U

n∑
i=1

(cixi(ξ) + fiyi(ξ))

U-LSP-pi s.t. θ ≥
n∑
i=1

ϕi(ξ), ξ ∈ U ,

ϕi(ξ) ≥ hi

 i∑
j=1

ξj −
i∑

j=1
xj

 , ξ ∈ U , i = 1, . . . , n,

ϕi(ξ) ≥ −pi

 i∑
j=1

ξj −
i∑

j=1
xj

 , ξ ∈ U , i = 1, . . . , n

xi(ξ) ≤Myi(ξ), i = 1, . . . , n,
y(ξ) ∈ {0, 1}n, x(ξ), ϕ(ξ) ≥ 0, ξ ∈ U .

We consider three variants of the problem, depending on whether y is adjustable and f positive.
First, we consider the general problem and prove that it can be solved in polynomial time.
Theorem 3. Problem U-LSP-pi amounts to solve a linear program with m + n3 constraints
and 2n variables.

If the problem does not contain fixed costs, it can be solved as a smaller linear program.
Theorem 4. If f = 0, then problem U-LSP-pi amounts to solve a linear program with m
constraints and n variables.

The last case we consider is obtained from U -LSP-pi by enforcing that y does not depend
on ξ, which is obtained by adding the constraint y(ξ) = y(ξ′) for each ξ, ξ′ ∈ U .
Theorem 5. If y does not depend on ξ, problem U-LSP-pi is NP-hard in general. Nevertheless,
if U = UΓ, the problem can be solved in polynomial time, by solving n2 shortest path problems
on a directed and acyclic graph with n nodes.

In addition to these theoretical results, our numerical results (reported in [8]) show that the
resulting problems are solved orders of magnitude faster than the dual bounds proposed in [7],
while obtaining better bounds in many cases.
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