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1 Introduction
Given an uncapacitated physical network, represented by a graph G = (V, E), and a set of
clients P , for which it is also known the thresholds on the amount of traffic that each client can
send (b+

p ) and receive (b−p ), the virtual private network design problem asks for (1) a connected
sub-network G′ = (V ′, E′), with V ′ ⊆ V and E′ ⊆ E; (2) a client assignment (p, v), p ∈ P and
v ∈ V ′, and; (3) a bandwidth allocation ue, e ∈ E′, in order to accommodate any demand traffic
matrix D ∈ RP×P , with Dpq ≥ 0, that respects client thresholds, i.e.,

∑
q∈P Dpq ≤ b+

p and∑
p∈P Dpq ≤ b−q . When G′ is acyclic, we have a VPN tree (VPNT). The Minimum VPN Tree

Problem (VPNTP) asks for a VPNT whose bandwidth allocation, i.e.,
∑
e∈E′ ue, is minimum.

It has been shown by [1] that, when client thresholds are asymmetric, i.e.,
∑
p∈P b+

p 6=
∑
b∈P b−p ,

the VPNTP belongs to NP-hard.
In this work, we are interested in the asymmetric version of VPNTP (hereafter AVPNTP).

We give a MILP for the AVPNTP and derive necessary and sufficient conditions under which
the basic inequalities define facets.

The MILP formulation introduced here deeply relies on some structural properties of asym-
metric VPN trees that can be found in [1]. Let yi be a variable that takes 1 if router i ∈ V is
in the solution and 0 otherwise. Let ze be a variable which takes 1 if edge e = ij is used to
connect routers i and j. For a pair (p, i), with p ∈ P and i ∈ V , let x(p,i) be a variable which
takes 1 if client p is assigned to router i in the solution and 0 otherwise. Thus, it follows that
a relaxation to AVPNTP can be given by

min
∑
a∈A

dG(a)Bpxa + B̂
∑
e∈E

ze∑
i∈V

x(p,i) ≥ 1, ∀ p ∈ P (1a)

xa ≤ yi, ∀ a = (p, i) ∈ A (1b)
ze ≤ yi, ze ≤ yj , ∀ e = ij ∈ E (1c)∑
e∈δ(S)

ze ≥ yi + yj − 1, ∀ S ⊆ V, |S| ≥ 2, i ∈ S, j ∈ V \ S (1d)

∑
e∈E

ze ≥
∑
i∈V

yi − 1 (1e)

ze ∈ {0, 1}, ∀ e ∈ E (1f)
yi ∈ {0, 1}, ∀ i ∈ V (1g)
xa ∈ {0, 1}, ∀ a ∈ A (1h)



where A = P × V , Bp = b+
p + b−p , B̂ = min{

∑
p∈P b+

p ,
∑
p∈P b−p }, and dG(v, p) is the length of

the shortest path (in number of hops) between router v and client p.
Inequalities (1a) guarantee that every client p is assigned to at least one router. Inequalities

(1b) and (1c) state that if router i is not in the solution then no client p can be assigned to
it neither any edge having it as an endpoint can be in the solution. Inequalities (1d) ensure
that the solution is connected. Inequality (1e) is a tree lower bound stating that the number
of edges in any solution must be at least equal the number of vertices in the solution minus
one unit. Constraints (1f)–(1h) are the trivial inequalities.

We point out that formulation (1a)–(1h) is close related to the one proposed by [1]. However,
in order to obtain a more adequate formulation to the polyhedral investigation here conducted,
constraints (1a) and (1e) are relaxations of the original constraints found in [1].

2 Polyhedral analysis
Let Q(G) be the convex hull of all integer solutions of (1a)–(1h), i.e.,

Q(G) = conv
{

(x, y, z) ∈ Z|P |×|V |+|V |+|E| : (x, y, z) satisfies (1a)− (1h)
}

.

First, we characterize the dimension of Q(G).

Theorem 1 The polyhedron Q(G) is full-dimensional if and only if the graph G = (V, E)
contains a cycle.

The next theorems characterize when inequalities (1a)–(1h) define facets of Q(G).

Theorem 2 For a given edge uv ∈ E, inequality zuv ≥ 0 defines a facet for Q(G) if and only
if (i) both vertices u and v have degree greater than 1 in G = (V, E) and (ii) there must exist
a cycle in G that does not contain uv.

Theorem 3 For a given router v, inequality yv ≤ 1 defines a facet for Q(G) if and only if the
graph G = (V, E) is 2-edge connected.

Theorem 4 For a given assignment (q, u), of client q to router u, inequality x(q,u) ≥ 0 defines
a facet for Q(G) if and only if node u has a degree of at least 2 in the graph G = (V, E).

Theorem 5 Inequalities (1a), (1b), (1c) and (1e) define facets for Q(G).

Theorem 6 For a given disjoint partition (S, S̄) of the vertex set V , and a pair u, v of vertices
lying in S and S̄, respectively, cut-set inequality (1d) defines a facet for Q(G) if and only if
both subgraphs G[S] and G[S̄], induced by S and S̄, are 2-edge connected.

3 Conclusions and future work
In this work we presented a MILP formulation to the AVPNTP and give necessary and suf-
ficient conditions under which the basic inequalities define facets. Besides the fact that it
can be interesting looking for new classes of valid inequalities and develop a Branch-and-Cut
algorithm, we think that it can also be a good perspective for future work to investigate some
correlated problems as for example the Connected Facility Location Problem, for which we can
easily adapt the formulation here presented.
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