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1 Introduction

We study the Stop Number Minimization Problem (SNMP) first introduced in [1]. Consider
a fleet of capacitated vehicles traveling along a closed circuit network in a clockwise direction,
and a set of dial-a-ride demands. The SNMP consists of assigning to each demand a vehicle
such that no vehicle is overloaded at any point of the circuit and the total number of vehicle’s
stops is minimized. Notice that a vehicle is allowed to make several tours before serving a
demand.

Our efforts focus on the constrained variant of the SNMP where all demands have a unit
load and vehicles are obliged to serve all demands in only one tour. This constrained problem
is called Unit SNMP and whether or not it is hard to solve remains an open question, while
the general SNMP is known to be NP-Hard.

Let K be the set of available vehicles each with capacity Cap ∈ Z+, V = {0, . . . , n} be the
set of stations sequentially ordered as they appear in the circuit network and E = {0, . . . , m}
be a set of unit load dial-a-ride demands such that each demand e ∈ E has an origin station
oe ∈ V and a destination station de ∈ V . The binary variable zk

e equals 1 if demand e ∈ E is
assigned to vehicle k ∈ K, or 0 otherwise, and the binary variable sk

v equals 1 if vehicle k ∈ K
stops at station v ∈ V , or 0 otherwise. The ILP presented in [1] is the following:

min
∑
v∈V

∑
k∈K

sk
v

s.t.∑
k∈K

zk
e = 1 ∀e ∈ E, (1)

∑
e∈Intv

zk
e ≤ Cap ∀k ∈ K, v ∈ V, (2)

zk
e ≤ sk

v ∀k ∈ K, e ∈ E, v ∈ {oe, de} (3)
zk

e ∈ {0, 1} ∀k ∈ K, e ∈ E, (4)
sk

v ∈ {0, 1} ∀k ∈ K, v ∈ V, (5)

where Intv = {e ∈ E : oe ≤ v and de > v} is the set of demands that intersect (have to be
on a vehicle at) station v ∈ V .

However, given its weak linear relaxation, traditional Branch-and-Bound approaches have
failed to solve this model efficiently. Thus, we search for families of valid inequalities capable
of strengthening the linear relaxation. Simultaneously, we look for cases where the problem
can be easily solved.



2 Our Contribution

2.1 Special polynomial cases
Consider the graph G = (V, E). Notice that this graph may have multiple edges. We treat the
special case where all demands intersect each other at some station v ∈ V (i.e., Intv = E) and
the vehicle’s capacity is restricted to 2. In this case, each vehicle can serve at most 2 demands.

First of all, we pack together (put in the same vehicle) pairs of multiple edges, then pairs of
isolated edges (edges that do not have any adjacent edges). Let G′ be the graph G after deleting
the packed edges. We construct the line graph L(G′) and search for a maximum matching.
Since [2] gives a polynomial time algorithm to solve the maximum matching problem on line
graphs, and our packing phase is also polynomial, the whole procedure is done in polynomial
time.

2.2 Valid Inequalities
For each v ∈ V , let Ov and Dv be the sets of demands that have station v as their origin, and
as their destination, respectively.

The following family of Strong Capacity inequalities is valid:∑
e∈Ov

zk
e ≤ Cap.sk

v ∀k ∈ K, v ∈ V, (6)∑
e∈Dv

zk
e ≤ Cap.sk

v ∀k ∈ K, v ∈ V. (7)

From the Strong Capacity inequalities (6)-(7) we are able to derive the following Gomory
cuts: ∑

k∈K

sk
v ≥

⌈max{|Ov|, |Dv|}
Cap

⌉
∀k ∈ K, v ∈ V. (8)

Let C ⊆ E be a subset of edges and G[C] be the graph induced by the edges in C. Then,
a set of edges C is called a connected cover if and only if |C| > Cap and the graph G[C] is
connected.

Let d
G

(v) denote the degree of node v ∈ V on graph G and let Gv be the subgraph induced
by edges in Intv. By definition, Gv is bipartite. Then, the following family of Connected Cover
inequalities is valid :∑

e∈C

zk
e ≤

∑
u∈V (G[C])

((d
G[C](u)− 1)sk

u) ∀k ∈ K, C ⊆ E(Gv), v ∈ V,

such that C is a connected cover.
(9)

When G[C] is a tree, the Connected Cover inequalities above are capable of cutting fractional
extreme points of the polyhedra defined by (1)-(3). On the other hand, if G[C] contains a
cycle, the inequality remains valid but do not cut any point. In this case however, we know
how to lift the inequality in order to so.

As these inequalities may appear in exponential number, we treat them in a Branch-and-Cut
algorithm.
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