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1 Introduction
As a rising trend in some countries, urban rail transit systems are used for the freight

transport through cities ([1]). We present here a decision support framework for the problem of
urban freight movement by rail and present mathematical methods for the optimal distribution
of goods. The problem we consider has a single rail line on which some stations can be used as
loading/unloading platforms for goods. Demand is known in advance and each client desires a
different time for the delivery.

2 Dynamic programming procedure for the problems having
a fixed number of demand sizes

We model the problem as a parallel batch scheduling problem in the presence of different
job/demand sizes. The case we tackle here has two stations : first one dedicated to loading
demands, second for the final destination for all demands. Goods have equal release dates and
equal due dates. In addition, the number of different demand sizes, i.e., demand volumes, is
considered to be constant and equal to K. There are T trains (or train trips) employed and
it is known in advance the departure time of trip t. The objective is the minimization of total
waiting time of goods at the departure station. This objective is equivalent to minimizing

∑
Cj

where Cj is the processing ending time of job j in a scheduling problem, i.e., delivery time
of demand j. Note that if K is arbitrary, the problem is NP − hard ([2]). When a constant
number of demand volumes is considered, the problem becomes equivalent to deciding how
many objects of volume (or size) size1, size2,..., sizeK should be loaded on train t. Define
f [q1, q2, ...qK , t] to be the minimum

∑
Cj value for a partial schedule completed at time train

t arrives to the final destination containing the first qk demands of size sizek, k = 1, ..., K.
Initially, set f [0, 0, ...0, 0] = 0 and all other values to infinity. The optimal

∑
Cj value will be

the smallest value of the form
minf [n1, n2, ...nK , T ]

where T is the last train and n1, n2, ...nK are the total numbers of demands having size
sizek, k = 1, ..., K.

The function values can be computed using the following recursive relation :

f [q1, ...qK , t] = minq′
k
∈{0,...,qk}f [q′

1, ..., q′
K , t− 1] +

K∑
k=1

(qk − q′
k) ∗ (arrTt − depTt)

where
∑K

k=1(qk− q′
k) ∗ sizek ≤ Capacity, arrTt and depTt are arrival and departure times of

train t at the delivery and departure stations, respectively. The complexity of the procedure is
O(n2K ∗ T )).



3 A compact MILP formulation to minimize total tardiness
in case of arbitrary demand sizes and multiple stations

We start by generating a matrix M which contains the tardiness values of each job j assigned
to train t. The elements Mjt of matrix M is calculated with the following formula :

Mjt =
{

max(0, At,arrj − dj), if rj ≤ At,depj

∞, otherwise
where rj is the ready time and dj the due time of demand j, Ats is the arrival time of train t

at station s, depj and arrj are the departure and arrival stations, respectively, of demand j. Let
xjt be the binary variable that equals to 1 if demand j is assigned to train t and 0 otherwise.
Then, tardiness value of demand j assigned to train t is determined with the following sum :∑T

t=1 xjt ∗Mjt.
Minimize

∑
∀j

∑
∀t xjt ∗Mjt

s.t.∑
∀t

xjt = 1 j = 1, .., N (1)∑
∀j′

xj′t ∗ sizej′ ≤ Cap t = 1, .., T and j′ ∈ J ′
s (2)∑

∀j′′

xj′′t ∗ timej′′ ≤ waitmax t = 1, .., T and j′′ ∈ J ′′
s (3)

Constraint set (1) assigns each demand to a single train. Constraint set (2) allows for each
train t at each station s a maximum capacity use equal to Cap. Moreover for each t at each
station, set J ′

s contains demands j such that depj ≤ s < arrj and rj ≤ Ats, i.e., station s is
greater or equal to the departure station and smaller than the arrival station for demand j,
and the release date of demand j is smaller than the arrival time of train t at the departure
station of that demand. This way, we calculate the capacity use of trains taking into account
demands that can be present in train t at station s. Similarly, constraint set (3) computes the
total loading and unloading time of items for each train at each station. For each train t and
station s, set J ′′

s contains demands j if station s is the departure or arrival station for demand j
respecting the feasibility of demand release dates and train arrival times at departure stations.

4 Conclusions
In this paper, we proposed an optimization framework for the use of urban/suburban rail

transit for freight transport. First, we studied the case of two stations in the presence of fixed
demand sizes and developed pseudo-polynomial dynamic programming algorithm. Then we
continued with a further generalization considering any demand size in the presence of mul-
tiple departure and arrival stations. Numerical results showed that the dynamic programming
procedure is faster in terms of solution time than the MILP model when the number of different
demand sizes is smaller or equal to 5. Other than that, the MILP model converges quickly to
the optimal solution such that the optimality gap is less than 1% at the end of one minute of
computation for instances containing 100 demands per day, 30 to 40 trains, and 2 to 5 stations.
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