On the multi-terminal vertex separator problem Youcef Magnouche, A. Ridha Mahjoub

Université Paris-Dauphine, PSL Research University, CNRS, UMR [7243], LAMSADE, 75016 PARIS, FRANCE

{youcef.magnouche, ridha.mahjoub}@dauphine.fr

Keywords : Vertex separator problem, Combinatorial optimization, Polytope composition, Column generation, Branch-and-Cut, Branch-and-Price.

1 Introduction

Let $G = (V \cup T, E)$ be a simple graph with $V \cup T$ the set of vertices, where T is a set of k distinguished vertices called *terminals*, and E the set of edges. A multi-terminal vertex separator in G is a subset $S \subseteq V$ such that each path between two terminals intersects S. Given a weight function $w : V \to \mathbb{N}$, the multi-terminal vertex separator problem (MTVSP) consists in finding a multi-terminal vertex separator of minimum weight. The MTVSP can be solved in polynomial time when |T| = 2 and it is NP-hard when $|T| \ge 3$ [1] [3]. The MTVS has applications in different areas like VLSI design, linear algebra, connectivity problems and parallel algorithms. In this paper we consider the MTVSP from a polyhedral point of view, we describe several facet defining inequalities and propose a Branch-and-Cut algorithm for the problem. Then, we study a composition (decomposition) technique for the multi-terminal vertex separator polytope in graphs that are decomposable by one-node cutsets. If G decomposes into G_1 and G_2 , we show that the multi-terminal vertex polytope of G can be described from two linear systems related to G_1 and G_2 . As consequence, we obtain a procedure to construct this polytope in graphs that are recursively decomposed. Finally, we propose an extended formulation and derive a Branch-and-Price algorithm.

A terminal path in $G = (V \cup T, E)$ is a path between two terminals. Let Γ be the set of all the terminal paths in G. Let $x \in \{0, 1\}^V$ such that for all $v \in V$, x_v is equal to 1 if vertex v belongs to the separator, 0 otherwise. The MTVSP is equivalent to the following ILP

$$\min \sum_{v \in V} x_v$$
$$\sum_{v \in P_{tt'}} x_v \ge 1 \qquad \forall P_{tt'} \in \Gamma,$$
(1)

 $x_v \in \{0, 1\} \qquad \forall v \in V.$ $\tag{2}$

In what follows we discuss a polyhedral approach for the MTVSP.

2 Polyhedral approach

Let P(G,T) be the convex hull of the solutions satisfying (1)-(2). We have that P(G,T) is full dimensional and for all $v \in V$, inequality $x_v \leq 1$ defines a facet of P(G,T). Moreover, we have the following results

Theorem 1

- 1. For $v \in V$, inequality $x_v \ge 0$ defines facet of P(G,T) if and only if, v does not belong to a terminal path $P_{tt'}$ containing exactly two internal vertices.
- 2. Inequality (1) associated with a terminal path $P_{tt'}$ defines a facet of P(G,T) if and only if $P_{tt'}$ is minimal and no vertex $v \in V \setminus P_{tt'}$ is adjacent to a terminal $t \in T \setminus \{t, t'\}$ and to two vertices of $P_{tt'}$.

Now we give further valid inequalities that may define facets for P(G,T).

A star tree is a tree where the pending nodes are the terminal nodes of the tree, and all the other (nonterminal) nodes, different from the root node v_r are of degree two.

Theorem 2 If $H_q = (V_{H_q} \cup T_{H_q}, E_{H_q})$ is a star tree of G with root v_r , then inequality

$$x(V_{H_q} \setminus \{v_r\}) + (q-1)x_{v_r} \ge q-1$$
(3)

is valid for P(G,T). Moreover it defines a facet for P(G,T) under some conditions.

A terminal tree $R_q = (V_{R_q} \cup T_{R_q}, E_{R_q})$, where T_{R_q} is a set of q terminals, is a tree, where T_{R_q} is the set of leaves. Let $d_{R_q}(v)$ be the degree of v in R_q .

Theorem 3 Given a terminal tree R_q , the following inequality is valid for P(G,T)

$$\sum_{v \in R_q} (d_{R_q}(v) - 1) x_v \ge q - 1.$$
(4)

A terminal cycle $J_q = (C \cup T_{J_q}, E_{J_q})$, where T_{J_q} is a set of q terminals $\{t_1, \ldots, t_q\}$, is a graph given by a cycle $C = \{v_1, \ldots, v_q\}$ of q vertices and q disjoint edges, e_{t_1}, \ldots, e_{t_q} between the vertices of C and the terminals of T_{J_q} .

Theorem 4 If $J_q = (C \cup T_{J_q}, E_{J_q})$ is a terminal cycle of G, then the following inequality

$$x(C) \ge \lceil \frac{q}{2} \rceil \tag{5}$$

is valid for P(G,T). Moreover, it defines a facet for P(G,T) under some conditions.

Theorem 5 Inequalities (1) and star tree inequalities can be separated in polynomial time.

3 Composition of polyhedra

We study a composition (decomposition) technique for the multi-terminal vertex separator polytope in graphs that are decomposable by one-node cutsets. Given a graph $G = (V \cup T, E)$ and two subgraphs $G_1 = (V_1 \cup T_1, E_1)$ and $G_2 = (V_2 \cup T_2, E_2)$, graph G is called a 1 - sum of G_1 and G_2 if $V = V_1 \cup V_2$, $T = T_1 \cup T_2$, $|T_1 \cap T_2| = 0$, $V_1 \cap V_2 = \{u\}$. Let $\tilde{G}_i = (\tilde{V}_i \cup \tilde{T}_i, \tilde{E}_i)$ be the graph obtained from G_i , for i = 1, 2, by adding a node w_i , a terminal q_i and the edges $q_i w_i, w_i u$.

Theorem 6 The linear inequalities describing $P(\tilde{G}_i, \tilde{T}_i)$ can be partitioned as follows

$$\sum_{v \in V_i \setminus \{u\}} a_j^i(v) x(v) \ge \alpha_j^i \quad \forall j \in I^i$$
(6)

$$\sum_{v \in V_i \setminus \{u\}} a_j^{\prime i}(v) x(v) + x(u) \ge \alpha_j^{\prime i} \quad \forall j \in I^{\prime i}$$

$$\tag{7}$$

$$\sum_{v \in V} b_j^i(v) x(v) + x(w_i) \ge \beta_j^i \quad \forall j \in J^i$$
(8)

$$x(v) \le 1 \qquad \forall v \in \widetilde{V}^i \tag{9}$$

$$x(v) \ge 0 \qquad \forall v \in \widetilde{V}^i \tag{10}$$

Theorem 7 The linear inequalities describing P(G,T) are as follow

$$\sum_{v \in V_i \setminus \{u\}} a_j^1(v) x(v) \ge \alpha_j^1 \qquad \qquad \forall j \in I^1$$
(11)

$$\sum_{v \in V_1 \setminus \{u\}} a_j^{\prime 1}(v) x(v) + x(u) \ge \alpha_j^{\prime 1} \qquad \forall j \in I^{\prime 1}$$

$$(12)$$

$$\sum_{v \in V_i \setminus \{u\}} a_j^2(v) x(v) \ge \alpha_j^2 \qquad \qquad \forall j \in I^2$$
(13)

$$\sum_{v \in V_2 \setminus \{u\}} a_j^{\prime 2}(v) x(v) + x(u) \ge \alpha_j^{\prime 2} \qquad \forall j \in I^{\prime 2}$$
(14)

$$\sum_{p=1}^{2} \sum_{v \in V_i} b_{j_p}^i(v) x(v) - x(u) \ge \sum_{p=1}^{2} \beta_{j_p}^i - 1 \qquad \forall j_1 \in J^1, \forall j_2 \in J^2$$
(15)

$$\begin{array}{ll}
x(v) \leq 1 & \forall v \in V \\
x(v) \geq 0 & \forall v \in V \\
\end{array} (16)$$

Inequalities (11) and (13) represent inequalities (6) and inequalities (12) and (14) represent inequalities (7). Inequalities (15) are called the mixed inequalities.

A linear system $Ax \leq b$ is total dual integral if for all $c \in \mathbb{Z}^n$, the problem { max $c^{\top}x : Ax \leq b$ } has a feasible solution and there is an integer optimal dual solution.

Theorem 8 For any star tree, the linear system given by (1), (3) and trivial inequalities is total dual integral.

Corollary 3.1 From Theorems 7 and 8, for any terminal tree, the polytope given by (1), (4) and trivial inequalities is integral.

4 Extended formulation

In this section, we introduce an extended formulation for the MTVSP and develop a Branchand-Price algorithm to solve it. For a terminal $t \in T$, a *isolating-separator* $S^t \subseteq V$ of G is a set of vertices that intersects all paths between t and terminals of $T \setminus \{t\}$. For a terminal $t \in T$, let S^t be the set of all isolating-separators in G associated with t. Let S be the set of all isolating-separators in G. Let $x \in \{0, 1\}^S$ and $y \in \{0, 1\}^V$ such that

 $x^{S} = \begin{cases} 1 & \text{if isolating-separator } S \text{ is selected}, \\ 0 & \text{otherwise.} \end{cases} \text{ for all } S \in \mathcal{S}$

 $y_v = \begin{cases} 1 & \text{if } v \in V \text{ belongs to the separator,} \\ 0 & \text{otherwise.} \end{cases} \text{ for all } v \in V$

Each $S \in \mathcal{S}$ is defined by the vectors $a^S \in \{0, 1\}^{V \cup T}$, $\overline{a}^S \in \{0, 1\}^V$ and $b^S \in \{0, 1\}^T$, as follows

$$a_{v,t}^{S} = \begin{cases} 1 & \text{if } v \text{ belongs to } S \text{ and } S \in \mathcal{S}^{t}, \\ 0 & \text{otherwise.} \end{cases} \text{ for all } v \in V, \ t \in T$$

$$\overline{a}_v^S = \begin{cases} 1 & \text{if } v \text{ belongs to } S, \\ 0 & \text{otherwise.} \end{cases} \text{ for all } v \in V$$

$$b_t^S = \begin{cases} 1 & \text{if } S \in \mathcal{S}^t, \\ 0 & \text{otherwise.} \end{cases} \text{ for all } t \in T$$

The MTVSP is equivalent to the following integer linear formulation

$$\min \qquad \sum_{v \in V} y_v \tag{18}$$

$$y_v - \sum_{S \in \mathcal{S}} a_{v,t}^S x^S \ge 0 \qquad \forall t \in T, \quad \forall v \in V,$$
(19)

$$-y_v + \sum_{S \in \mathcal{S}} \overline{a}_v^S x^S \ge 0 \qquad \forall v \in V,$$

$$(20)$$

$$\sum_{S \in S^t} b_t^S x^S = 1 \qquad \forall t \in T,$$
(21)

$$x^S \ge 0 \qquad \forall \ S \in \mathcal{S},\tag{22}$$

$$y_v \in \{0, 1\} \qquad \forall v \in V.$$

$$(23)$$

The pricing problem aims at generating an isolating-separator S^{t^*} associated with the terminal $t^* \in T$. In the following Table, D and R represent the Dimacs and random instances, respectively. The Columns, Cols and No represent, the number of variables generated and the number of nodes in the branching tree, respectively.

	Instance			Branch-and-Price algorithm				Branch-and-Cut algorithm						
	n	m	T	Cols	No	Gap	CPU	(1)	(3)	(4)	(5)	No	Gap	CPU
D	74	624	6	308	34	0.24	0.22	64	51	5	1	23	19.20	3.39
D	87	835	6	419	31	0.40	0.31	31	147	26	3	26	28.50	8.58
D	95	778	6	475	25	0.57	0.24	35	38	26	15	1	0.00	1.26
D	100	2967	8	871	33	0.63	1.00	56	31	4	6	1	0.00	1.55
D	128	804	8	4791	63	0.39	23.24	103	127	4	2	29	28.10	5.75
D	128	10426	8	863	35	0.60	3.38	31	22	11	8	1	0.00	1.31
D	144	5224	8	3995	35	0.56	25.41	85	20	9	9	1	0.00	1.44
D	188	3920	8	904	41	0.60	1.53	116	63	2	13	1	0.00	2.69
D	196	8399	8	1801	37	0.70	5.39	56	19	12	11	1	0.00	1.24
D	197	3952	8	606	27	0.64	0.72	71	11	10	3	1	0.00	0.58
D	256	12674	8	4888	43	0.65	43.69	88	27	5	11	1	0.00	2.10
R	50	513	7	552	27	0.64	0.46	48	33	31	6	1	0.00	1.24
R	70	993	7	678	29	0.65	0.80	44	18	19	4	1	0.00	0.64
R	100	1986	7	561	27	0.64	0.61	45	13	12	5	1	0.00	1.02
R	300	17793	7	816	29	0.65	4.42	67	8	8	2	1	0.00	2.31
R	600	70674	7	6624	29	0.65	285.23	23	10	9	5	1	0.00	4.04
R	700	96436	7	1381	27	0.64	48.41	48	7	5	1	1	0.00	3.96

TAB. 1: Results associated with the Branch-and-Cut and the Branch-and-Price algorithms.

References

- Walid Ben-Ameur and Mohamed Didi Biha. On the minimum cut separator problem. Networks, 59(1):30–36, 2012.
- [2] Denis Cornaz, Youcef Magnouche, A Ridha Mahjoub, and Sébastien Martin. The multiterminal vertex separator problem: Polyhedral analysis and branch-and-cut. In International Conference on Computers & Industrial Engineering (CIE45), 2015.
- [3] Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. Multiway cuts in directed and node weighted graphs. In Automata, Languages and Programming, pages 487–498. Springer, 1994.
- [4] Guyslain Naves and Vincent Jost. The graphs with the max-mader-flow-min-multiway-cut property. arXiv preprint arXiv:1101.2061, 2011.