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1 Introduction

Let G = (VUT,E) be a simple graph with V U T the set of vertices, where T is a set of
k distinguished vertices called terminals, and E the set of edges. A multi-terminal vertex
separator in G is a subset S C V such that each path between two terminals intersects S.
Given a weight function w : V' — N, the multi-terminal vertex separator problem (MTVSP)
consists in finding a multi-terminal vertex separator of minimum weight. The MTVSP can
be solved in polynomial time when |T| = 2 and it is NP-hard when |T| > 3 [1] [3]. The
MTVS has applications in different areas like VLSI design, linear algebra, connectivity problems
and parallel algorithms. In this paper we consider the MTVSP from a polyhedral point of
view, we describe several facet defining inequalities and propose a Branch-and-Cut algorithm
for the problem. Then, we study a composition (decomposition) technique for the multi-
terminal vertex separator polytope in graphs that are decomposable by one-node cutsets. If
G decomposes into G; and Gg, we show that the multi-terminal vertex polytope of G can
be described from two linear systems related to G; and Gs. As consequence, we obtain a
procedure to construct this polytope in graphs that are recursively decomposed. Finally, we
propose an extended formulation and derive a Branch-and-Price algorithm.

A terminal path in G = (V UT, E) is a path between two terminals. Let I" be the set of all
the terminal paths in G. Let 2 € {0,1}" such that for all v € V, z, is equal to 1 if vertex v
belongs to the separator, 0 otherwise. The MTVSP is equivalent to the following ILP

min E Ty

veV
Z Ty > 1 vptt/ € Fa (1)
VEP,
x, € {0,1} YveV. (2)

In what follows we discuss a polyhedral approach for the MTVSP.
2 Polyhedral approach

Let P(G,T) be the convex hull of the solutions satisfying (1)-(2). We have that P(G,T) is
full dimensional and for all v € V| inequality z, < 1 defines a facet of P(G,T). Moreover, we
have the following results

Theorem 1
1. Forwv €V, inequality x, > 0 defines facet of P(G,T) if and only if, v does not belong to

a terminal path Py containing exactly two internal vertices.

2. Inequality (1) associated with a terminal path Py defines a facet of P(G,T) if and only
if Py is minimal and no vertex v € V' \ Py is adjacent to a terminal t € T\ {t,t'} and
to two vertices of Py .



Now we give further valid inequalities that may define facets for P(G,T).

A star tree is a tree where the pending nodes are the terminal nodes of the tree, and all the
other (nonterminal) nodes, different from the root node v, are of degree two.

Theorem 2 If H, = (Vy,UTy,, Eqg,) is a star tree of G with root v,, then inequality
(Vi \ {or}) + (¢ = Dy, > g =1 (3)
is valid for P(G,T). Moreover it defines a facet for P(G,T) under some conditions.
A terminal tree Ry, = (Vr, UTRr,, ER,), where Tg, is a set of ¢ terminals, is a tree, where
TR, is the set of leaves. Let dg, (v) be the degree of v in R,.

Theorem 3 Given a terminal tree Ry, the following inequality is valid for P(G,T')

Z (dg,(v) = 1)z, > q— 1. (4)

vER,

A terminal cycle J; = (CUTy,, Ey,), where T, is a set of ¢ terminals {t1,...,t,}, is a graph
given by a cycle C' = {vy,...,v4} of g vertices and ¢ disjoint edges, e;,,...,e;, between the
vertices of C' and the terminals of T, .

Theorem 4 If J, = (CUTy,, Ej,) is a terminal cycle of G, then the following inequality
q
2(0) = 111 )
is valid for P(G,T). Moreover, it defines a facet for P(G,T) under some conditions.

Theorem 5 Inequalities (1) and star tree inequalities can be separated in polynomial time.

3 Composition of polyhedra

We study a composition (decomposition) technique for the multi-terminal vertex separator
polytope in graphs that are decomposable by one-node cutsets. Given a graph G = (VUT, E)
and two subgraphs G = (V1 UT1, E1) and Gy = (Vo U Ty, Es), graph G is called a 1 — sum of
Grand Go if V=VUW, T=T1UT, |T1NTy| =0, ViNVy ={u}. Let G; = (V; UT;, E;)
be the graph obtained from G;, for ¢ = 1,2, by adding a node wj;, a terminal ¢; and the edges
q;W;, W;U.

G, G

Theorem 6 The linear inequalities describing P(éi, ﬁ) can be partitioned as follows

Z a;(v)m(’u) > a} viel (6)
veVi\{u}
Z a;i(v)x(v) +x(u) > a;-i Vjel (7)
veVi\{u}
Z b;(v)x(v) + z(w;) > ﬁ]i- VjeJ (8)
veV;
r(v) <1 YoeV (9)

1
z(v) >0 Yve Vi (10)



Theorem 7 The linear inequalities describing P(G,T) are as follow

Z a}(v)x(v) > a} viel! (11)
veVi\{u}
> dfw)a(v) + x(u) > off vielt (12)
veVi\{u}
Z a?(v)x(v) > oz? Vj e I? (13)
veVi\{u}
> P w)r(v) + x(u) > o VielI? (14)
veVa\{u}
2 . 2 .
SN () —w(uw) = > -1 Vi e Ve (15)
p=1veV; p=1
z(v) <1 Yo eV (16)
z(v) >0 YoeV (17)

Inequalities (11) and (13) represent inequalities (6) and inequalities (12) and (14) represent
inequalities (7). Inequalities (15) are called the mixed inequalities.

A linear system Az < bis total dual integral if for all ¢ € Z", the problem { max ¢’z : Az <
b } has a feasible solution and there is an integer optimal dual solution.

Theorem 8 For any star tree, the linear system given by (1), (3) and trivial inequalities is
total dual integral.

Corollary 3.1 From Theorems 7 and 8, for any terminal tree, the polytope given by (1), (4)
and trivial inequalities is integral.

4 Extended formulation

In this section, we introduce an extended formulation for the MTVSP and develop a Branch-
and-Price algorithm to solve it. For a terminal t € T, a isolating-separator St C V of G is
a set of vertices that intersects all paths between ¢ and terminals of 7'\ {t}. For a terminal
t € T, let 8 be the set of all isolating-separators in G associated with t. Let S be the set of
all isolating-separators in G. Let z € {0,1}° and y € {0,1}" such that

5 = 1 if 1solat-1ng—separator 5 Is selected, forall S e S
0 otherwise.

. 1 ifve V belongs to the separator, forallv eV
0 otherwise.

Each S € S is defined by the vectors a® € {0, 1}VYT @% € {0,1}" and b° € {0,1}7, as follows

~ ¢
g _{1 if v belongs to S and S € S*, forallv eV, teT

vt 71 0 otherwise.

—_— 1 ifw belpngs to .S, for all v € V
v 0 otherwise.
1 ifSeds
S _ )
b= { 0 otherwise, oralteT



The MTVSP is equivalent to the following integer linear formulation

min

>

veV

Yo

Yo — Z aitxs > 0

SeS

Ses
Z ¥ = 1
Sest
z° > 0
Yo € {0,1}

VieT, YvelV,

Yo eV,

VteT,

VSesS,
VovelV.

The pricing problem aims at generating an isolating-separator S*" associated with the termi-
nal t* € T. In the following Table, D and R represent the Dimacs and random instances,
respectively. The Columns, Cols and No represent, the number of variables generated and the
number of nodes in the branching tree, respectively.

Instance Branch-and-Price algorithm Branch-and-Cut algorithm

n m |T| | Cols No Gap CPU| (1) (3) (4 (5) No Gap CPU
D 14 624 6| 308 34 0.24 0.22 | 64 51 5 1 23 1920 3.39
D 87 835 6| 419 31 0.40 0.31 | 31 147 26 3 26 2850 8.8
D 95 778 6| 475 25 0.57 024 | 35 38 26 15 1 000 1.26
D 100 2967 8| 871 33 0.63 1.00 | 56 31 4 6 1 0.00 1.55
D 128 804 814791 63 0.39 23.24 | 103 127 4 2 29 28.10 5.75
D 128 10426 8| 83 35 0.60 338 | 31 22 11 8 1 000 1.31
D 144 5224 813995 35 0.56 25411 8 20 9 9 1 000 1.44
D 188 3920 81 904 41 0.60 1.53 | 116 63 2 13 1 0.00 269
D 196 8399 811801 37 0.70 539 | 56 19 12 11 1 0.00 1.24
D 197 3952 8| 606 27 0.64 072 71 11 10 3 1 0.00 0.58
D 256 12674 8| 4888 43 0.65 43.69 | 88 27 5 11 1 000 210
R 50 513 71 552 27 0.64 0.46 | 48 33 31 6 1 000 1.24
R 70 993 7| 678 29 0.65 080 | 44 18 19 4 1 0.00 0.64
R 100 1986 7| 561 27 0.64 0.61 | 45 13 12 5 1 0.00 1.02
R 300 17793 7| 816 29 0.65 442 | 67 8 8 2 1 0.00 2.31
R 600 70674 716624 29 0.65 28523 | 23 10 9 5 1 0.00 4.04
R 700 96436 711381 27 0.64 48.41 | 48 7 5 1 1 0.00 3.96
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