On the multi-terminal vertex separator problem

Youcef Magnouche, A. Ridha Mahjoub
Université Paris-Dauphine, PSL Research University, CNRS, UMR [7243], LAMSADE, 75016
PARIS, FRANCE
\{youcef.magnouche, ridha.mahjoub\}@dauphine.fr

Keywords : Vertex separator problem, Combinatorial optimization, Polytope composition, Column generation, Branch-and-Cut, Branch-and-Price.

1 Introduction

Let $G=(V \cup T, E)$ be a simple graph with $V \cup T$ the set of vertices, where T is a set of k distinguished vertices called terminals, and E the set of edges. A multi-terminal vertex separator in G is a subset $S \subseteq V$ such that each path between two terminals intersects S. Given a weight function $w: V \rightarrow \mathbb{N}$, the multi-terminal vertex separator problem (MTVSP) consists in finding a multi-terminal vertex separator of minimum weight. The MTVSP can be solved in polynomial time when $|T|=2$ and it is NP-hard when $|T| \geq 3$ [1] [3]. The MTVS has applications in different areas like VLSI design, linear algebra, connectivity problems and parallel algorithms. In this paper we consider the MTVSP from a polyhedral point of view, we describe several facet defining inequalities and propose a Branch-and-Cut algorithm for the problem. Then, we study a composition (decomposition) technique for the multiterminal vertex separator polytope in graphs that are decomposable by one-node cutsets. If G decomposes into G_{1} and G_{2}, we show that the multi-terminal vertex polytope of G can be described from two linear systems related to G_{1} and G_{2}. As consequence, we obtain a procedure to construct this polytope in graphs that are recursively decomposed. Finally, we propose an extended formulation and derive a Branch-and-Price algorithm.
A terminal path in $G=(V \cup T, E)$ is a path between two terminals. Let Γ be the set of all the terminal paths in G. Let $x \in\{0,1\}^{V}$ such that for all $v \in V, x_{v}$ is equal to 1 if vertex v belongs to the separator, 0 otherwise. The MTVSP is equivalent to the following ILP

$$
\begin{array}{ll}
\min \sum_{v \in V} x_{v} & \\
\sum_{v \in P_{t t^{\prime}}} x_{v} \geq 1 & \forall P_{t t^{\prime}} \in \Gamma, \\
x_{v} \in\{0,1\} \quad & \forall v \in V . \tag{2}
\end{array}
$$

In what follows we discuss a polyhedral approach for the MTVSP.

2 Polyhedral approach

Let $P(G, T)$ be the convex hull of the solutions satisfying (1)-(2). We have that $P(G, T)$ is full dimensional and for all $v \in V$, inequality $x_{v} \leq 1$ defines a facet of $P(G, T)$. Moreover, we have the following results

Theorem 1

1. For $v \in V$, inequality $x_{v} \geq 0$ defines facet of $P(G, T)$ if and only if, v does not belong to a terminal path $P_{t t^{\prime}}$ containing exactly two internal vertices.
2. Inequality (1) associated with a terminal path $P_{t t^{\prime}}$ defines a facet of $P(G, T)$ if and only if $P_{t t^{\prime}}$ is minimal and no vertex $v \in V \backslash P_{t t^{\prime}}$ is adjacent to a terminal $t \in T \backslash\left\{t, t^{\prime}\right\}$ and to two vertices of $P_{t t^{\prime}}$.

Now we give further valid inequalities that may define facets for $P(G, T)$.
A star tree is a tree where the pending nodes are the terminal nodes of the tree, and all the other (nonterminal) nodes, different from the root node v_{r} are of degree two.
Theorem 2 If $H_{q}=\left(V_{H_{q}} \cup T_{H_{q}}, E_{H_{q}}\right)$ is a star tree of G with root v_{r}, then inequality

$$
\begin{equation*}
x\left(V_{H_{q}} \backslash\left\{v_{r}\right\}\right)+(q-1) x_{v_{r}} \geq q-1 \tag{3}
\end{equation*}
$$

is valid for $P(G, T)$. Moreover it defines a facet for $P(G, T)$ under some conditions.
A terminal tree $R_{q}=\left(V_{R_{q}} \cup T_{R_{q}}, E_{R_{q}}\right)$, where $T_{R_{q}}$ is a set of q terminals, is a tree, where $T_{R_{q}}$ is the set of leaves. Let $d_{R_{q}}(v)$ be the degree of v in R_{q}.

Theorem 3 Given a terminal tree R_{q}, the following inequality is valid for $P(G, T)$

$$
\begin{equation*}
\sum_{v \in R_{q}}\left(d_{R_{q}}(v)-1\right) x_{v} \geq q-1 . \tag{4}
\end{equation*}
$$

A terminal cycle $J_{q}=\left(C \cup T_{J_{q}}, E_{J_{q}}\right)$, where $T_{J_{q}}$ is a set of q terminals $\left\{t_{1}, \ldots, t_{q}\right\}$, is a graph given by a cycle $C=\left\{v_{1}, \ldots, v_{q}\right\}$ of q vertices and q disjoint edges, $e_{t_{1}}, \ldots, e_{t_{q}}$ between the vertices of C and the terminals of $T_{J_{q}}$.
Theorem 4 If $J_{q}=\left(C \cup T_{J_{q}}, E_{J_{q}}\right)$ is a terminal cycle of G, then the following inequality

$$
\begin{equation*}
x(C) \geq\left\lceil\frac{q}{2}\right\rceil \tag{5}
\end{equation*}
$$

is valid for $P(G, T)$. Moreover, it defines a facet for $P(G, T)$ under some conditions.
Theorem 5 Inequalities (1) and star tree inequalities can be separated in polynomial time.

3 Composition of polyhedra

We study a composition (decomposition) technique for the multi-terminal vertex separator polytope in graphs that are decomposable by one-node cutsets. Given a graph $G=(V \cup T, E)$ and two subgraphs $G_{1}=\left(V_{1} \cup T_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2} \cup T_{2}, E_{2}\right)$, graph G is called a $1-s u m$ of G_{1} and G_{2} if $V=V_{1} \cup V_{2}, T=T_{1} \cup T_{2},\left|T_{1} \cap T_{2}\right|=0, V_{1} \cap V_{2}=\{u\}$. Let $\widetilde{G}_{i}=\left(\widetilde{V}_{i} \cup \widetilde{T}_{i}, \widetilde{E}_{i}\right)$ be the graph obtained from G_{i}, for $i=1,2$, by adding a node w_{i}, a terminal q_{i} and the edges $q_{i} w_{i}, w_{i} u$.

Theorem 6 The linear inequalities describing $P\left(\widetilde{G}_{i}, \widetilde{T}_{i}\right)$ can be partitioned as follows

$$
\begin{align*}
\sum_{v \in V_{i} \backslash\{u\}} a_{j}^{i}(v) x(v) & \geq \alpha_{j}^{i} & & \forall j \in I^{i} \tag{6}\\
\sum_{v \in V_{i} \backslash\{u\}} a_{j}^{\prime i}(v) x(v)+x(u) & \geq \alpha_{j}^{\prime i} & & \forall j \in I^{\prime i} \tag{7}\\
\sum_{v \in V_{i}} b_{j}^{i}(v) x(v)+x\left(w_{i}\right) & \geq \beta_{j}^{i} & & \forall j \in J^{i} \tag{8}\\
x(v) & \leq 1 & & \forall v \in \widetilde{V}^{i} \tag{9}\\
x(v) & \geq 0 & & \forall v \in \widetilde{V}^{i} \tag{10}
\end{align*}
$$

Theorem 7 The linear inequalities describing $P(G, T)$ are as follow

$$
\begin{array}{rlrl}
\sum_{v \in V_{i} \backslash\{u\}} a_{j}^{1}(v) x(v) & \geq \alpha_{j}^{1} & \forall j \in I^{1} \\
\sum_{v \in V_{1} \backslash\{u\}} a_{j}^{\prime 1}(v) x(v)+x(u) & \geq \alpha_{j}^{\prime 1} & & \forall j \in I^{\prime 1} \\
\sum_{v \in V_{i} \backslash\{u\}} a_{j}^{2}(v) x(v) & \geq \alpha_{j}^{2} & \forall j \in I^{2} \\
\sum_{v \in V_{2} \backslash\{u\}} a_{j}^{\prime 2}(v) x(v)+x(u) & \geq \alpha_{j}^{\prime 2} & \forall j \in I^{\prime 2} \\
\sum_{p=1}^{2} \sum_{v \in V_{i}} b_{j_{p}}^{i}(v) x(v)-x(u) & \geq \sum_{p=1}^{2} \beta_{j_{p}}^{i}-1 & \forall j_{1} \in J^{1}, \forall j_{2} \in J^{2} \\
x(v) & \leq 1 & \forall v \in V \\
x(v) & \geq 0 & \forall v \in V
\end{array}
$$

Inequalities (11) and (13) represent inequalities (6) and inequalities (12) and (14) represent inequalities (7). Inequalities (15) are called the mixed inequalities.

A linear system $A x \leq b$ is total dual integral if for all $c \in \mathbb{Z}^{n}$, the problem $\left\{\max c^{\top} x: A x \leq\right.$ $b\}$ has a feasible solution and there is an integer optimal dual solution.

Theorem 8 For any star tree, the linear system given by (1), (3) and trivial inequalities is total dual integral.

Corollary 3.1 From Theorems 7 and 8, for any terminal tree, the polytope given by (1), (4) and trivial inequalities is integral.

4 Extended formulation

In this section, we introduce an extended formulation for the MTVSP and develop a Branch-and-Price algorithm to solve it. For a terminal $t \in T$, a isolating-separator $S^{t} \subseteq V$ of G is a set of vertices that intersects all paths between t and terminals of $T \backslash\{t\}$. For a terminal $t \in T$, let \mathcal{S}^{t} be the set of all isolating-separators in G associated with t. Let \mathcal{S} be the set of all isolating-separators in G. Let $x \in\{0,1\}^{\mathcal{S}}$ and $y \in\{0,1\}^{V}$ such that

$$
\begin{aligned}
& x^{S}=\left\{\begin{array}{lll}
1 & \text { if isolating-separator } S \text { is selected, } & \text { for all } S \in \mathcal{S} \\
0 & \text { otherwise. }
\end{array}\right. \\
& y_{v}=\left\{\begin{array}{ll}
1 & \text { if } v \in V \text { belongs to the separator, } \\
0 & \text { otherwise. }
\end{array} \text { for all } v \in V\right.
\end{aligned}
$$

Each $S \in \mathcal{S}$ is defined by the vectors $a^{S} \in\{0,1\}^{V \cup T}, \bar{a}^{S} \in\{0,1\}^{V}$ and $b^{S} \in\{0,1\}^{T}$, as follows

$$
\begin{aligned}
& a_{v, t}^{S}=\left\{\begin{array}{ll}
1 & \text { if } v \text { belongs to } S \text { and } S \in \mathcal{S}^{t}, \\
0 & \text { otherwise. }
\end{array} \text { for all } v \in V, t \in T\right. \\
& \bar{a}_{v}^{S}=\left\{\begin{array}{ll}
1 & \text { if } v \text { belongs to } S, \\
0 & \text { otherwise. }
\end{array} \text { for all } v \in V\right. \\
& b_{t}^{S}=\left\{\begin{array}{ll}
1 & \text { if } S \in \mathcal{S}^{t}, \\
0 & \text { otherwise. }
\end{array} \text { for all } t \in T\right.
\end{aligned}
$$

The MTVSP is equivalent to the following integer linear formulation

$$
\begin{align*}
& \min \sum_{v \in V} y_{v} \tag{18}\\
& y_{v}-\sum_{S \in \mathcal{S}} a_{v, t}^{S} x^{S} \geq 0 \quad \forall t \in T, \quad \forall v \in V, \tag{19}\\
& -y_{v}+\sum_{S \in \mathcal{S}} \bar{a}_{v}^{S} x^{S} \geq 0 \quad \forall v \in V, \tag{20}\\
& \sum_{S \in \mathcal{S}^{t}} b_{t}^{S} x^{S}=1 \quad \forall t \in T, \tag{21}\\
& x^{S} \geq 0 \quad \forall S \in \mathcal{S}, \tag{22}\\
& y_{v} \in\{0,1\} \quad \forall v \in V . \tag{23}
\end{align*}
$$

The pricing problem aims at generating an isolating-separator $S^{t^{*}}$ associated with the terminal $t^{*} \in T$. In the following Table, D and R represent the Dimacs and random instances, respectively. The Columns, Cols and No represent, the number of variables generated and the number of nodes in the branching tree, respectively.

	Instance			Branch-and-Price algorithm				Branch-and-Cut algorithm						
	n	m	$\|T\|$	Cols	No	Gap	CPU	(1)	(3)	(4)	(5)	No	Gap	CPU
D	74	624	6	308	34	0.24	0.22	64	51	5	1	23	19.20	3.39
D	87	835	6	419	31	0.40	0.31	31	147	26	3	26	28.50	8.58
D	95	778	6	475	25	0.57	0.24	35	38	26	15	1	0.00	1.26
D	100	2967	8	871	33	0.63	1.00	56	31	4	6	1	0.00	1.55
D	128	804	8	4791	63	0.39	23.24	103	127	4	2	29	28.10	5.75
D	128	10426	8	863	35	0.60	3.38	31	22	11	8	1	0.00	1.31
D	144	5224	8	3995	35	0.56	25.41	85	20	9	9	1	0.00	1.44
D	188	3920	8	904	41	0.60	1.53	116	63	2	13	1	0.00	2.69
D	196	8399	8	1801	37	0.70	5.39	56	19	12	11	1	0.00	1.24
D	197	3952	8	606	27	0.64	0.72	71	11	10	3	1	0.00	0.58
D	256	12674	8	4888	43	0.65	43.69	88	27	5	11	1	0.00	2.10
R	50	513	7	552	27	0.64	0.46	48	33	31	6	1	0.00	1.24
R	70	993	7	678	29	0.65	0.80	44	18	19	4	1	0.00	0.64
R	100	1986	7	561	27	0.64	0.61	45	13	12	5	1	0.00	1.02
R	300	17793	7	816	29	0.65	4.42	67	8	8	2	1	0.00	2.31
R	600	70674	7	6624	29	0.65	285.23	23	10	9	5	1	0.00	4.04
R	700	96436	7	1381	27	0.64	48.41	48	7	5	1	1	0.00	3.96

TAB. 1: Results associated with the Branch-and-Cut and the Branch-and-Price algorithms.

References

[1] Walid Ben-Ameur and Mohamed Didi Biha. On the minimum cut separator problem. Networks, 59(1):30-36, 2012.
[2] Denis Cornaz, Youcef Magnouche, A Ridha Mahjoub, and Sébastien Martin. The multiterminal vertex separator problem: Polyhedral analysis and branch-and-cut. In International Conference on Computers E Industrial Engineering (CIE45), 2015.
[3] Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. Multiway cuts in directed and node weighted graphs. In Automata, Languages and Programming, pages 487-498. Springer, 1994.
[4] Guyslain Naves and Vincent Jost. The graphs with the max-mader-flow-min-multiway-cut property. arXiv preprint arXiv:1101.2061, 2011.

