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1 Introduction
Let G = (V ∪ T,E) be a simple graph with V ∪ T the set of vertices, where T is a set of
k distinguished vertices called terminals, and E the set of edges. A multi-terminal vertex
separator in G is a subset S ⊆ V such that each path between two terminals intersects S.
Given a weight function w : V → N, the multi-terminal vertex separator problem (MTVSP)
consists in finding a multi-terminal vertex separator of minimum weight. The MTVSP can
be solved in polynomial time when |T | = 2 and it is NP-hard when |T | ≥ 3 [1] [3]. The
MTVS has applications in different areas like VLSI design, linear algebra, connectivity problems
and parallel algorithms. In this paper we consider the MTVSP from a polyhedral point of
view, we describe several facet defining inequalities and propose a Branch-and-Cut algorithm
for the problem. Then, we study a composition (decomposition) technique for the multi-
terminal vertex separator polytope in graphs that are decomposable by one-node cutsets. If
G decomposes into G1 and G2, we show that the multi-terminal vertex polytope of G can
be described from two linear systems related to G1 and G2. As consequence, we obtain a
procedure to construct this polytope in graphs that are recursively decomposed. Finally, we
propose an extended formulation and derive a Branch-and-Price algorithm.

A terminal path in G = (V ∪ T,E) is a path between two terminals. Let Γ be the set of all
the terminal paths in G. Let x ∈ {0, 1}V such that for all v ∈ V , xv is equal to 1 if vertex v
belongs to the separator, 0 otherwise. The MTVSP is equivalent to the following ILP

min
∑
v∈V

xv∑
v∈Ptt′

xv ≥ 1 ∀Ptt′ ∈ Γ, (1)

xv ∈ {0, 1} ∀v ∈ V. (2)

In what follows we discuss a polyhedral approach for the MTVSP.

2 Polyhedral approach
Let P (G, T ) be the convex hull of the solutions satisfying (1)-(2). We have that P (G, T ) is
full dimensional and for all v ∈ V , inequality xv ≤ 1 defines a facet of P (G, T ). Moreover, we
have the following results

Theorem 1

1. For v ∈ V , inequality xv ≥ 0 defines facet of P (G, T ) if and only if, v does not belong to
a terminal path Ptt′ containing exactly two internal vertices.

2. Inequality (1) associated with a terminal path Ptt′ defines a facet of P (G, T ) if and only
if Ptt′ is minimal and no vertex v ∈ V \ Ptt′ is adjacent to a terminal t ∈ T \ {t, t′} and
to two vertices of Ptt′ .



Now we give further valid inequalities that may define facets for P (G, T ).

A star tree is a tree where the pending nodes are the terminal nodes of the tree, and all the
other (nonterminal) nodes, different from the root node vr are of degree two.

Theorem 2 If Hq = (VHq ∪ THq , EHq ) is a star tree of G with root vr, then inequality

x(VHq \ {vr}) + (q − 1)xvr ≥ q − 1 (3)

is valid for P (G, T ). Moreover it defines a facet for P (G, T ) under some conditions.

A terminal tree Rq = (VRq ∪ TRq , ERq ), where TRq is a set of q terminals, is a tree, where
TRq is the set of leaves. Let dRq (v) be the degree of v in Rq.

Theorem 3 Given a terminal tree Rq, the following inequality is valid for P (G, T )∑
v∈Rq

(dRq (v)− 1)xv ≥ q − 1. (4)

A terminal cycle Jq = (C ∪ TJq , EJq ), where TJq is a set of q terminals {t1, . . . , tq}, is a graph
given by a cycle C = {v1, . . . , vq} of q vertices and q disjoint edges, et1 , . . . , etq between the
vertices of C and the terminals of TJq .

Theorem 4 If Jq = (C ∪ TJq , EJq ) is a terminal cycle of G, then the following inequality

x(C) ≥ dq2e (5)

is valid for P (G, T ). Moreover, it defines a facet for P (G, T ) under some conditions.

Theorem 5 Inequalities (1) and star tree inequalities can be separated in polynomial time.

3 Composition of polyhedra
We study a composition (decomposition) technique for the multi-terminal vertex separator
polytope in graphs that are decomposable by one-node cutsets. Given a graph G = (V ∪T,E)
and two subgraphs G1 = (V1 ∪ T1, E1) and G2 = (V2 ∪ T2, E2), graph G is called a 1− sum of
G1 and G2 if V = V1 ∪ V2, T = T1 ∪ T2, |T1 ∩ T2| = 0, V1 ∩ V2 = {u}. Let G̃i = (Ṽi ∪ T̃i, Ẽi)
be the graph obtained from Gi, for i = 1, 2, by adding a node wi, a terminal qi and the edges
qiwi, wiu.

Theorem 6 The linear inequalities describing P (G̃i, T̃i) can be partitioned as follows∑
v∈Vi\{u}

ai
j(v)x(v) ≥ αi

j ∀j ∈ I i (6)

∑
v∈Vi\{u}

a′ij (v)x(v) + x(u) ≥ α′ij ∀j ∈ I ′i (7)

∑
v∈Vi

bi
j(v)x(v) + x(wi) ≥ βi

j ∀j ∈ J i (8)

x(v) ≤ 1 ∀v ∈ Ṽ i (9)
x(v) ≥ 0 ∀v ∈ Ṽ i (10)



Theorem 7 The linear inequalities describing P (G, T ) are as follow∑
v∈Vi\{u}

a1
j (v)x(v) ≥ α1

j ∀j ∈ I1 (11)

∑
v∈V1\{u}

a′1j (v)x(v) + x(u) ≥ α′1j ∀j ∈ I ′1 (12)

∑
v∈Vi\{u}

a2
j (v)x(v) ≥ α2

j ∀j ∈ I2 (13)

∑
v∈V2\{u}

a′2j (v)x(v) + x(u) ≥ α′2j ∀j ∈ I ′2 (14)

2∑
p=1

∑
v∈Vi

bi
jp

(v)x(v)− x(u) ≥
2∑

p=1
βi

jp
− 1 ∀j1 ∈ J1,∀j2 ∈ J2 (15)

x(v) ≤ 1 ∀v ∈ V (16)
x(v) ≥ 0 ∀v ∈ V (17)

Inequalities (11) and (13) represent inequalities (6) and inequalities (12) and (14) represent
inequalities (7). Inequalities (15) are called the mixed inequalities.

A linear system Ax ≤ b is total dual integral if for all c ∈ Zn, the problem { max c>x : Ax ≤
b } has a feasible solution and there is an integer optimal dual solution.

Theorem 8 For any star tree, the linear system given by (1), (3) and trivial inequalities is
total dual integral.

Corollary 3.1 From Theorems 7 and 8, for any terminal tree, the polytope given by (1), (4)
and trivial inequalities is integral.

4 Extended formulation

In this section, we introduce an extended formulation for the MTVSP and develop a Branch-
and-Price algorithm to solve it. For a terminal t ∈ T , a isolating-separator St ⊆ V of G is
a set of vertices that intersects all paths between t and terminals of T \ {t}. For a terminal
t ∈ T , let St be the set of all isolating-separators in G associated with t. Let S be the set of
all isolating-separators in G. Let x ∈ {0, 1}S and y ∈ {0, 1}V such that

xS =
{ 1 if isolating-separator S is selected,

0 otherwise. for all S ∈ S

yv =
{ 1 if v ∈ V belongs to the separator,

0 otherwise. for all v ∈ V

Each S ∈ S is defined by the vectors aS ∈ {0, 1}V ∪T , aS ∈ {0, 1}V and bS ∈ {0, 1}T , as follows

aS
v,t =

{ 1 if v belongs to S and S ∈ St,
0 otherwise. for all v ∈ V, t ∈ T

aS
v =

{ 1 if v belongs to S,
0 otherwise. for all v ∈ V

bS
t =

{ 1 if S ∈ St,
0 otherwise. for all t ∈ T



The MTVSP is equivalent to the following integer linear formulation

min
∑
v∈V

yv (18)

yv −
∑
S∈S

aS
v,tx

S ≥ 0 ∀t ∈ T, ∀v ∈ V, (19)

−yv +
∑
S∈S

aS
v x

S ≥ 0 ∀v ∈ V, (20)
∑

S∈St

bS
t x

S = 1 ∀t ∈ T, (21)

xS ≥ 0 ∀ S ∈ S, (22)
yv ∈ {0, 1} ∀ v ∈ V. (23)

The pricing problem aims at generating an isolating-separator St∗ associated with the termi-
nal t∗ ∈ T . In the following Table, D and R represent the Dimacs and random instances,
respectively. The Columns, Cols and No represent, the number of variables generated and the
number of nodes in the branching tree, respectively.

Instance Branch-and-Price algorithm Branch-and-Cut algorithm
n m |T | Cols No Gap CPU (1) (3) (4) (5) No Gap CPU

D 74 624 6 308 34 0.24 0.22 64 51 5 1 23 19.20 3.39
D 87 835 6 419 31 0.40 0.31 31 147 26 3 26 28.50 8.58
D 95 778 6 475 25 0.57 0.24 35 38 26 15 1 0.00 1.26
D 100 2967 8 871 33 0.63 1.00 56 31 4 6 1 0.00 1.55
D 128 804 8 4791 63 0.39 23.24 103 127 4 2 29 28.10 5.75
D 128 10426 8 863 35 0.60 3.38 31 22 11 8 1 0.00 1.31
D 144 5224 8 3995 35 0.56 25.41 85 20 9 9 1 0.00 1.44
D 188 3920 8 904 41 0.60 1.53 116 63 2 13 1 0.00 2.69
D 196 8399 8 1801 37 0.70 5.39 56 19 12 11 1 0.00 1.24
D 197 3952 8 606 27 0.64 0.72 71 11 10 3 1 0.00 0.58
D 256 12674 8 4888 43 0.65 43.69 88 27 5 11 1 0.00 2.10
R 50 513 7 552 27 0.64 0.46 48 33 31 6 1 0.00 1.24
R 70 993 7 678 29 0.65 0.80 44 18 19 4 1 0.00 0.64
R 100 1986 7 561 27 0.64 0.61 45 13 12 5 1 0.00 1.02
R 300 17793 7 816 29 0.65 4.42 67 8 8 2 1 0.00 2.31
R 600 70674 7 6624 29 0.65 285.23 23 10 9 5 1 0.00 4.04
R 700 96436 7 1381 27 0.64 48.41 48 7 5 1 1 0.00 3.96

TAB. 1: Results associated with the Branch-and-Cut and the Branch-and-Price algorithms.
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