
On the Steiner k-edge-connected network design problem

Ibrahima Diarrassouba1, Mohamed Khalil Labidi2,3, Ali Ridha Mahjoub3

1 Le Havre University, LMAH, FR-CNRS-3335, Le Havre, France
{ibrahima.diarrassouba}@univ-lehavre.fr

2 Faculty of Science of Tunis, URAPOP, UR13ZS38, Tunis, Tunisia
{mohamed-khalil.labidi}@dauphine.fr

3 Paris Dauphine University, PSL Research University, CNRS UMR 7243, LAMSADE, 75016 Paris,
France

{ridha.mahjoub}@dauphine.fr

Keywords : Lagrangian relaxation, large scale, genetic algorithm, hybridization, parallel
computing, SkESNDP.

1 Introduction

Let G = (V, E) be an undirected graph, a subset of nodes S ⊆ V called terminals, a weight
function ω : E → R which associates the weight ωe with each edge e ∈ E. The Steiner
k-Edge-Connected Network Design Problem (SkESNDP for short) is the problem of finding a
minimum weight subgraph of G spanning S such that between every two nodes u, v ∈ S, there
are at least k-edge-disjoint paths.

The SkESNDP is a special case of a more general model, introduced by [6] and later called
generalized Steiner problem. This problem is well known to be NP-hard and has been largely
investigated in the literature. For an exhaustive description of Steiner survivability problems
variants we refer the reader to [2], and for more complete surveys to [1, 3, 5].

2 Integer programming formulation

The SkESNDP can be formulated using a polynomial number of variables and constraints using
|S|(|S| − 1)/2 minimum cost st-flow problems on a directed graph obtained by exchanging
each edge uv ∈ E by two arcs (u, v) and (v, u). This formulation is called Undirected Flow
Formulation (see [4]). The SkESNDP is equivalent to

min
∑

uv∈E

ωuvxuv

∑
v∈V \{u}

fst
uv −

∑
l∈V \{u}

fst
lu =

k, if u = s,

−k, if u = t,

0, if u ∈ V \ {s, t} ,

 for all u ∈ V and {s, t} ∈ D, (1)

fst
uv

fst
vu

}
≤ xuv, for all uv ∈ E and {s, t} ∈ D, (2)

fst
uv, fst

vu ≥ 0, for all uv ∈ E and {s, t} ∈ D, (3)
xuv ≤ 1, for all uv ∈ E, (4)

xuv ∈ {0, 1}, for all uv ∈ E, (5)
fst

uv ∈ {0, 1}, for all uv ∈ E, {s, t} ∈ D. (6)

3 Parallel hybrid optimization algorithm
Our algorithm relies on the usage of parallel computing for solving the SkESNDP and taking
advantage from the diagonal structure of the formulation presented above. Namely, we devise
an optimization approach for the problem based on three algorithms

• a greedy heuristic (SH);

• a Lagrangian relaxation algorithm (RLA);

• a genetic algorithm (GA).

For our purpose, we run these three algorithms in a parallel computing framework. Also,
each iteration of each algorithm is used to improve the other algorithms, and hence, improve
the whole algorithm. Moreover, we solve the Lagrangian relaxation, and the genetic algorithms
using parallel computing.

Instances RLA SH PHA CPLEX
name |V | |S| UB LB Gap CPU UB CPU UB LB Gap CPU UB LB Gap CPU

berlin 30 3 2539 2409.13 5.12 00:00:03 2800 00:00:00 2503 2285.98 8.67 00:00:00 2489 2489 0 00:00:00
52 7 20400 3127.03 84.67 00:00:37 4761 00:00:00 4187 3006.06 28.2 00:03:19 3802 3389.61 10.85 02:00:00

st 70 9 2920 201.558 93.1 00:01:13 552 00:00:00 507 222.73 56.07 00:07:10 688 297.11 56.82 02:00:00
kroA 100 9 151739 5358.9 96.47 00:04:12 21614 00:00:00 19846 5270.00 73.45 00:24:35 49051 7821.06 84.06 02:00:00

200 9 194591 6294.12 96.77 00:17:02 22947 00:00:00 20403 6088.26 70.16 01:33:39 117741 5458.25 95.36 02:00:00
200 13 375741 9256.4 97.54 00:35:33 29989 00:00:01 26397 8525.46 67.7 02:00:00 294825 7890.25 97.32 02:00:00

lin 318 13 56637 3553.51 93.73 01:00:24 8051 00:00:05 7660 2656.36 65.32 02:00:00 93116900 0 100 02:00:00
318 15 75722 3369.12 95.55 01:37:53 9331 00:00:07 9017 2749.56 69.51 02:00:00 – – – –

TAB. 1: Numerical results for the algorithms RLA, SH, PHA and CPLEX for k = 3

We can notice that the approach is able to improve, for all the instances, the upper bounds
given by SH and RLA. Comparing PHA to CPLEX we can see that our algorithm produces
better upper bounds for the large scale graphs while CPLEX is able to solve to optimality the
small ones. We can also see that for 4 instances, CPLEX produces a better lower bound than
PHA. Also, the gap produced by PHA is better than that produced by CPLEX for 6 instances.

Finally, we can see that the CPU time of PHA is relatively small, while CPLEX reaches the
maximum CPU time for almost all the instances (6 instances over 8). Moreover, PHA has been
able to produce an upper bound for instance lin318-15 while CPLEX was not able to produce
even a feasible solution due to lack of memory.

References
[1] Ding-Zhu Du, JM Smith, and J Hyam Rubinstein. Advances in Steiner trees, volume 6.

Springer Science & Business Media, 2013.

[2] Mathias Hauptmann and Marek Karpiński. A compendium on steiner tree problems. Inst.
für Informatik, 2013.

[3] Hervé Kerivin and A Ridha Mahjoub. Design of survivable networks: A survey. Networks,
46(1):1–21, 2005.

[4] Thomas L Magnanti and S Raghavan. Strong formulations for network design problems
with connectivity requirements. Networks, 45(2):61–79, 2005.

[5] Hans Jürgen Prömel and Angelika Steger. The Steiner tree problem: a tour through graphs,
algorithms, and complexity. Springer Science & Business Media, 2012.

[6] Kenneth Steiglitz, Peter Weiner, and D Kleitman. The design of minimum-cost survivable
networks. IEEE Transactions on Circuit Theory, 16(4):455–460, 1969.

