A new method for solving linear programs

Mohand Bentobache^{1,2}, Mohand Ouamer Bibi²

¹ Laboratory of Pure and Applied Mathematics, LMPA, University of Laghouat, 03000, Algeria mbentobache@yahoo.com ² LaMOS Research Unit, University of Bejaia, 06000, Algeria

mobibi.dz@gmail.com

Mots-clés : linear programming, hybrid direction, suboptimality estimate.

1 Introduction

In [1, 2], a new algorithm for solving linear programming problems with bounded variables was suggested. This algorithm uses the concept of hybrid direction in order to move from one feasible solution to a better one. In this work, we suggest a new hybrid direction algorithm for solving linear programs. In Section 2, we state the problem and give some definitions. In Section 3, we present the suggested method. Finally, Section 4 concludes the paper.

2 Problem statement and definitions

Consider the linear programming problem :

$$\max z = c^T x, \text{ subject to } Ax = b, \ l \le x \le u, \tag{1}$$

where c and x are n-vectors; b an m-vector; A an $(m \times n)$ -matrix with rankA = m < n; l and u are finite-valued n-vectors. We define the following sets of indices : $I = \{1, 2, ..., m\}$, $J = \{1, 2, ..., n\}$, $J = J_B \cup J_N$, $J_B \cap J_N = \emptyset$, $|J_B| = m$. The set J_B is called a *support* if $det(A_B) = detA(I, J_B) \neq 0$. An n-vector x is called a feasible solution (FS) if it satisfies the constraints of problem (1). A FS x^0 is called optimal if it maximizes the objective function $z(x) = c^T x$. A FS x^{ϵ} is called ϵ -optimal if $z(x^0) - z(x^{\epsilon}) \leq \epsilon$, where x^0 is an optimal solution for the problem (1) and ϵ is a nonnegative number.

3 An iteration of the method

Let $\{x, J_B\}$ be a support feasible solution (SFS) for the problem (1), ϵ a nonnegative number chosen in advance and $\eta > 0$. We compute the *m*-vector of multipliers π , the *n*-vector of reduced costs $\Delta^T = (\Delta_B^T, \Delta_N^T) = (0, \Delta_N^T)$ and the suboptimality estimate β as follows :

$$\pi^T = c_B^T A_B^{-1}, \ \Delta_N^T = \pi^T A_N - c_N^T, \text{ where } c_B = c(J_B), \ c_N = c(J_N), \ A_N = A(I, J_N),$$
(2)

$$\beta = \beta(x, J_B) = \sum_{j \in \Delta_j > 0, j \in J_N} \Delta_j(x_j - l_j) + \sum_{\Delta_j < 0, j \in J_N} \Delta_j(x_j - u_j).$$
(3)

If $\beta \leq \epsilon$, then the algorithm stops with the ϵ -optimal pair $\{x, J_B\}$. Else, we compute the following sets of indices :

$$\begin{aligned} J_{NE}^{+} &= \{j \in J_{N} : \Delta_{j} > \eta(x_{j} - l_{j}) \text{ and } x_{j} > l_{j}\}, J_{NE}^{-} &= \{j \in J_{N} : \Delta_{j} < \eta(x_{j} - u_{j}) \text{ and } x_{j} < u_{j}\}, \\ J_{NI}^{+} &= \{j \in J_{N} : 0 < \Delta_{j} \le \eta(x_{j} - l_{j})\}, \ J_{NI}^{-} &= \{j \in J_{N} : \eta(x_{j} - u_{j}) \le \Delta_{j} < 0\}, \\ J_{NR}^{+} &= \{j \in J_{N} : \Delta_{j} > 0 \text{ and } x_{j} = l_{j}\}, \ J_{NR}^{-} &= \{j \in J_{N} : \Delta_{j} < 0 \text{ and } x_{j} = u_{j}\}, \\ J_{N0}^{-} &= \{j \in J_{N} : \Delta_{j} = 0\}, \ J_{NI} = J_{NI}^{+} \cup J_{NI}^{-}, \ J_{NE} = J_{NE}^{+} \cup J_{NE}^{-}, \ J_{NR} = J_{N0} \cup J_{NR}^{+} \cup J_{NR}^{-}. \end{aligned}$$

Let us define the quantities γ and μ as follows :

$$\gamma = \sum_{j \in J_{NI}^+} \Delta_j (x_j - l_j) + \sum_{j \in J_{NI}^-} \Delta_j (x_j - u_j) + \frac{1}{\eta} \sum_{\substack{j \in J_{NE}^+ \cup J_{NE}^-}} \Delta_j^2, \tag{4}$$

$$\mu = -\sum_{j \in J_{NE}^+} \Delta_j (x_j - l_j) - \sum_{j \in J_{NE}^-} \Delta_j (x_j - u_j) + \frac{1}{\eta} \sum_{j \in J_{NE}^+ \cup J_{NE}^-} \Delta_j^2.$$
(5)

We can prove that $\beta = \gamma - \mu \leq \gamma$, $\gamma \geq 0$ and $\mu \geq 0$. We define the direction d as follows :

$$d_{j} = l_{j} - x_{j}, \text{ if } j \in J_{NI}^{+}; \ d_{j} = u_{j} - x_{j}, \text{ if } j \in J_{NI}^{-}; d_{j} = \frac{-\Delta_{j}}{\eta}, \text{ if } j \in J_{NE}^{-} \cup J_{NE}^{+}; \ d_{j} = 0, \text{ if } j \in J_{NR}; \ d_{B} = d(J_{B}) = -A_{B}^{-1}A_{N}d(J_{N}).$$

$$(6)$$

Note that the direction d is feasible : Ad = 0. In order to improve the objective function while remaining in the feasible region, we compute the step length θ^0 along the direction d as follows :

$$\theta^{0} = \min\{\theta_{j_{1}}, \theta_{j_{2}}, 1\}, \ \theta_{j_{1}} = \min\{\theta_{j}, j \in J_{B}\}, \ \theta_{j_{2}} = \min\{\theta_{j}, j \in J_{NE}\},$$
(7)

where $\theta_j = (u_j - x_j)/d_j$, if $d_j > 0$; $\theta_j = (l_j - x_j)/d_j$, if $d_j < 0$; $\theta_j = \infty$, if $d_j = 0$. Then the new FS is $\bar{x} = x + \theta^0 d$. We can prove that $z(\bar{x}) - z(x) = \theta^0 \gamma = \theta^0(\beta + \mu) \ge 0$ (d is an ascent direction) and $\bar{\beta} = \beta(\bar{x}, J_B) = (1 - \theta^0)\beta - \theta^0\mu \le \beta$ (the suboptimality decreases). If $\theta^0 = 1$, then $J_{NE}^+ \cup J_{NE}^- = \emptyset \Rightarrow \mu = 0 \Rightarrow \bar{\beta} = 0$. So $\{\bar{x}, J_B\}$ is optimal. If $\bar{\beta} \le \epsilon$, then the algorithm stops with the ϵ -optimal pair $\{\bar{x}, J_B\}$.

If $\theta^0 = \theta_{j_2}$, then we start a new iteration with the pair $\{\bar{x}, J_B\}$. Else $(\theta^0 = \theta_{j_1} < 1)$, we compute the *n*-vector $\kappa = x + d$ and the real number $\alpha_0 = \kappa_{j_1} - \bar{x}_{j_1}$, where j_1 is the index computed in (7). We compute the dual direction t:

$$t_{j_1} = -\text{sign}(\alpha_0); \ t_j = 0, \ j \neq j_1, \ j \in J_B; \ t_N^T = t_B^T A_B^{-1} A_N.$$
 (8)

We compute the sets : $J_{N0}^+ = \{j \in J_{N0} : t_j > 0\}, \ J_{N0}^- = \{j \in J_{N0} : t_j < 0\}$, and the quantity :

$$\alpha = -|\alpha_0| + \sum_{j \in J_{N_0}^+ \cup J_{N_E}^+} t_j(\kappa_j - l_j) + \sum_{j \in J_{N_0}^- \cup J_{N_E}^-} t_j(\kappa_j - u_j).$$
(9)

We compute the new reduced costs vector and the new support as follows :

$$\bar{\Delta} = \Delta + \sigma^0 t \text{ and } \bar{J}_B = (J_B \setminus \{j_1\}) \cup \{j_0\}, \text{ where}$$

$$\sigma^0 = \sigma_{j_0} = \min_{j \in J_N} \{\sigma_j\}, \text{ with } \sigma_j = \begin{cases} \frac{-\Delta_j}{t_j}, & \text{if } \Delta_j t_j < 0; \\ 0, & \text{if } j \in J_{N0}^- \text{ and } \kappa_j \neq u_j; \\ 0, & \text{if } j \in J_{N0}^+ \text{ and } \kappa_j \neq l_j; \\ \infty, & \text{otherwise.} \end{cases}$$
(10)

We can prove that $\overline{\overline{\beta}} = \beta(\overline{x}, \overline{J}_B) = \beta(\overline{x}, J_B) + \sigma^0 \alpha$. If $\overline{\overline{\beta}} \leq \epsilon$, then the algorithm stops with the ϵ -optimal pair $\{\overline{x}, \overline{J}_B\}$. If $\alpha > 0$, we start a new iteration with the SFS $\{\overline{x}, J_B\}$. Else, we start a new iteration with the SFS $\{\overline{x}, \overline{J}_B\}$.

4 Conclusion

In this work, we have suggested a new hybrid direction method for solving linear programs with bounded variables. In futur work, we will compare it with the simplex algorithm [3] on randomly generated and practical test problems.

Références

- Mohand Ouamer Bibi and Mohand Bentobache. A hybrid direction algorithm for solving linear programs. International Journal of Computer Mathematics, 92(2):200-216, 2015.
- [2] Mohand Bentobache and Mohand Ouamer Bibi. Numerical Methods of Linear and Quadratic Programming. French Academic Presses, Germany, 2016 (in french).
- [3] G.B. Dantzig, *Linear Programming and Extensions*, Princeton University Press, Princeton, N.J., 1963.