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1 Introduction
In [1, 2], a new algorithm for solving linear programming problems with bounded variables

was suggested. This algorithm uses the concept of hybrid direction in order to move from one
feasible solution to a better one. In this work, we suggest a new hybrid direction algorithm
for solving linear programs. In Section 2, we state the problem and give some de�nitions. In
Section 3, we present the suggested method. Finally, Section 4 concludes the paper.

2 Problem statement and de�nitions
Consider the linear programming problem :

max z = cT x, subject to Ax = b, l ≤ x ≤ u, (1)

where c and x are n-vectors ; b an m-vector ; A an (m × n)-matrix with rankA = m < n ; l
and u are �nite-valued n-vectors. We de�ne the following sets of indices : I = {1, 2, . . . , m},
J = {1, 2, . . . , n}, J = JB ∪ JN , JB ∩ JN = ∅, |JB| = m. The set JB is called a support if
det(AB) = detA(I, JB) 6= 0. An n-vector x is called a feasible solution (FS) if it satis�es the
constraints of problem (1). A FS x0 is called optimal if it maximizes the objective function
z(x) = cT x. A FS xε is called ε-optimal if z(x0)− z(xε) ≤ ε, where x0 is an optimal solution
for the problem (1) and ε is a nonnegative number.

3 An iteration of the method
Let {x, JB} be a support feasible solution (SFS) for the problem (1), ε a nonnegative

number chosen in advance and η > 0. We compute the m-vector of multipliers π, the n-vector
of reduced costs ∆T = (∆T

B, ∆T
N ) = (0, ∆T

N ) and the suboptimality estimate β as follows :

πT = cT
BA−1

B , ∆T
N = πT AN − cT

N , where cB = c(JB), cN = c(JN ), AN = A(I, JN ), (2)

β = β(x, JB) =
∑

j∈∆j>0,j∈JN

∆j(xj − lj) +
∑

∆j<0,j∈JN

∆j(xj − uj). (3)

If β ≤ ε, then the algorithm stops with the ε-optimal pair {x, JB}. Else, we compute the
following sets of indices :

J+
NE = {j ∈ JN : ∆j > η(xj − lj) and xj > lj}, J−NE = {j ∈ JN : ∆j < η(xj − uj) and xj < uj},

J+
NI = {j ∈ JN : 0 < ∆j ≤ η(xj − lj)}, J−NI = {j ∈ JN : η(xj − uj) ≤ ∆j < 0},

J+
NR = {j ∈ JN : ∆j > 0 and xj = lj}, J−NR = {j ∈ JN : ∆j < 0 and xj = uj},

JN0 = {j ∈ JN : ∆j = 0}, JNI = J+
NI ∪ J−NI , JNE = J+

NE ∪ J−NE , JNR = JN0 ∪ J+
NR ∪ J−NR.



Let us de�ne the quantities γ and µ as follows :
γ =

∑

j∈J+
NI

∆j(xj − lj) +
∑

j∈J−NI

∆j(xj − uj) +
1
η

∑

j∈J+
NE∪J−NE

∆2
j , (4)

µ = −
∑

j∈J+
NE

∆j(xj − lj)−
∑

j∈J−NE

∆j(xj − uj) +
1
η

∑

j∈J+
NE∪J−NE

∆2
j . (5)

We can prove that β = γ − µ ≤ γ, γ ≥ 0 and µ ≥ 0. We de�ne the direction d as follows :
dj = lj − xj , if j ∈ J+

NI ; dj = uj − xj , if j ∈ J−NI ;

dj = −∆j

η , if j ∈ J−NE ∪ J+
NE ; dj = 0, if j ∈ JNR; dB = d(JB) = −A−1

B ANd(JN ).
(6)

Note that the direction d is feasible : Ad = 0. In order to improve the objective function
while remaining in the feasible region, we compute the step length θ0 along the direction d as
follows :

θ0 = min{θj1 , θj2 , 1}, θj1 = min{θj , j ∈ JB}, θj2 = min{θj , j ∈ JNE}, (7)
where θj = (uj − xj)/dj , if dj > 0; θj = (lj − xj)/dj , if dj < 0; θj = ∞, if dj = 0.
Then the new FS is x̄ = x + θ0d. We can prove that z(x̄)− z(x) = θ0γ = θ0(β + µ) ≥ 0 (d is
an ascent direction) and β̄ = β(x̄, JB) = (1− θ0)β − θ0µ ≤ β (the suboptimality decreases).
If θ0 = 1, then J+

NE ∪ J−NE = ∅ ⇒ µ = 0 ⇒ β̄ = 0. So {x̄, JB} is optimal.
If β̄ ≤ ε, then the algorithm stops with the ε-optimal pair {x̄, JB}.
If θ0 = θj2 , then we start a new iteration with the pair {x̄, JB}. Else (θ0 = θj1 < 1), we
compute the n-vector κ = x + d and the real number α0 = κj1 − x̄j1 , where j1 is the index
computed in (7). We compute the dual direction t :

tj1 = −sign(α0); tj = 0, j 6= j1, j ∈ JB; tTN = tTBA−1
B AN . (8)

We compute the sets : J+
N0 = {j ∈ JN0 : tj > 0}, J−N0 = {j ∈ JN0 : tj < 0}, and the quantity :

α = −|α0|+
∑

j∈J+
N0∪J+

NE

tj(κj − lj) +
∑

j∈J−N0∪J−NE

tj(κj − uj). (9)

We compute the new reduced costs vector and the new support as follows :
∆̄ = ∆ + σ0t and J̄B = (JB \ {j1}) ∪ {j0}, where

σ0 = σj0 = min
j∈JN

{σj}, with σj =





−∆j

tj
, if ∆jtj < 0 ;

0, if j ∈ J−N0 and κj 6= uj ;
0, if j ∈ J+

N0 and κj 6= lj ;
∞, otherwise.

(10)

We can prove that β = β(x̄, J̄B) = β(x̄, JB) + σ0α. If β ≤ ε, then the algorithm stops with
the ε-optimal pair {x̄, J̄B}. If α > 0, we start a new iteration with the SFS {x̄, JB}. Else, we
start a new iteration with the SFS {x̄, J̄B}.

4 Conclusion
In this work, we have suggested a new hybrid direction method for solving linear programs

with bounded variables. In futur work, we will compare it with the simplex algorithm [3] on
randomly generated and practical test problems.
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