A new method for solving linear programs

Mohand Bentobache ${ }^{1,2}$, Mohand Ouamer Bibi ${ }^{2}$
${ }^{1}$ Laboratory of Pure and Applied Mathematics, LMPA, University of Laghouat, 03000, Algeria
mbentobache@yahoo.com
${ }^{2}$ LaMOS Research Unit, University of Bejaia, 06000, Algeria
mobibi.dz@gmail.com

Mots-clés : linear programming, hybrid direction, suboptimality estimate.

1 Introduction

In [1, 2], a new algorithm for solving linear programming problems with bounded variables was suggested. This algorithm uses the concept of hybrid direction in order to move from one feasible solution to a better one. In this work, we suggest a new hybrid direction algorithm for solving linear programs. In Section 2, we state the problem and give some definitions. In Section 3, we present the suggested method. Finally, Section 4 concludes the paper.

2 Problem statement and definitions

Consider the linear programming problem :

$$
\begin{equation*}
\max z=c^{T} x, \text { subject to } A x=b, l \leq x \leq u, \tag{1}
\end{equation*}
$$

where c and x are n-vectors; b an m-vector ; A an $(m \times n)$-matrix with $\operatorname{rank} A=m<n ; l$ and u are finite-valued n-vectors. We define the following sets of indices : $I=\{1,2, \ldots, m\}$, $J=\{1,2, \ldots, n\}, J=J_{B} \cup J_{N}, J_{B} \cap J_{N}=\emptyset,\left|J_{B}\right|=m$. The set J_{B} is called a support if $\operatorname{det}\left(A_{B}\right)=\operatorname{det} A\left(I, J_{B}\right) \neq 0$. An n-vector x is called a feasible solution (FS) if it satisfies the constraints of problem (1). A FS x^{0} is called optimal if it maximizes the objective function $z(x)=c^{T} x$. A FS x^{ϵ} is called ϵ-optimal if $z\left(x^{0}\right)-z\left(x^{\epsilon}\right) \leq \epsilon$, where x^{0} is an optimal solution for the problem (1) and ϵ is a nonnegative number.

3 An iteration of the method

Let $\left\{x, J_{B}\right\}$ be a support feasible solution (SFS) for the problem (1), ϵ a nonnegative number chosen in advance and $\eta>0$. We compute the m-vector of multipliers π, the n-vector of reduced costs $\Delta^{T}=\left(\Delta_{B}^{T}, \Delta_{N}^{T}\right)=\left(0, \Delta_{N}^{T}\right)$ and the suboptimality estimate β as follows :

$$
\begin{gather*}
\pi^{T}=c_{B}^{T} A_{B}^{-1}, \Delta_{N}^{T}=\pi^{T} A_{N}-c_{N}^{T}, \text { where } c_{B}=c\left(J_{B}\right), c_{N}=c\left(J_{N}\right), A_{N}=A\left(I, J_{N}\right), \tag{2}\\
\beta=\beta\left(x, J_{B}\right)=\sum_{j \in \Delta_{j}>0, j \in J_{N}} \Delta_{j}\left(x_{j}-l_{j}\right)+\sum_{\Delta_{j}<0, j \in J_{N}} \Delta_{j}\left(x_{j}-u_{j}\right) . \tag{3}
\end{gather*}
$$

If $\beta \leq \epsilon$, then the algorithm stops with the ϵ-optimal pair $\left\{x, J_{B}\right\}$. Else, we compute the following sets of indices :

$$
\begin{aligned}
& J_{N E}^{+}=\left\{j \in J_{N}: \Delta_{j}>\eta\left(x_{j}-l_{j}\right) \text { and } x_{j}>l_{j}\right\}, J_{N E}^{-}=\left\{j \in J_{N}: \Delta_{j}<\eta\left(x_{j}-u_{j}\right) \text { and } x_{j}<u_{j}\right\}, \\
& J_{N I}^{+}=\left\{j \in J_{N}: 0<\Delta_{j} \leq \eta\left(x_{j}-l_{j}\right)\right\}, J_{N I}^{-}=\left\{j \in J_{N}: \eta\left(x_{j}-u_{j}\right) \leq \Delta_{j}<0\right\}, \\
& J_{N R}^{+}=\left\{j \in J_{N}: \Delta_{j}>0 \text { and } x_{j}=l_{j}\right\}, J_{N R}^{-}=\left\{j \in J_{N}: \Delta_{j}<0 \text { and } x_{j}=u_{j}\right\}, \\
& J_{N 0}=\left\{j \in J_{N}: \Delta_{j}=0\right\}, J_{N I}=J_{N I}^{+} \cup J_{N I}^{-}, \quad J_{N E}=J_{N E}^{+} \cup J_{N E}^{-}, J_{N R}=J_{N 0} \cup J_{N R}^{+} \cup J_{N R}^{-} .
\end{aligned}
$$

Let us define the quantities γ and μ as follows :

$$
\begin{gather*}
\gamma=\sum_{j \in J_{N I}^{+}} \Delta_{j}\left(x_{j}-l_{j}\right)+\sum_{j \in J_{N I}^{-}} \Delta_{j}\left(x_{j}-u_{j}\right)+\frac{1}{\eta} \sum_{j \in J_{N E}^{+} \cup J_{N E}^{-}} \Delta_{j}^{2}, \tag{4}\\
\mu=-\sum_{j \in J_{N E}^{+}} \Delta_{j}\left(x_{j}-l_{j}\right)-\sum_{j \in J_{N E}^{-}} \Delta_{j}\left(x_{j}-u_{j}\right)+\frac{1}{\eta} \sum_{j \in J_{N E}^{+} \cup J_{N E}^{-}} \Delta_{j}^{2} . \tag{5}
\end{gather*}
$$

We can prove that $\beta=\gamma-\mu \leq \gamma, \gamma \geq 0$ and $\mu \geq 0$. We define the direction d as follows :

$$
\begin{align*}
& d_{j}=l_{j}-x_{j}, \text { if } j \in J_{N I}^{+} ; d_{j}=u_{j}-x_{j}, \text { if } j \in J_{N I}^{-} ; \\
& d_{j}=\frac{-\Delta_{j}}{\eta}, \text { if } j \in J_{N E}^{-} \cup J_{N E}^{+} ; d_{j}=0, \text { if } j \in J_{N R} ; d_{B}=d\left(J_{B}\right)=-A_{B}^{-1} A_{N} d\left(J_{N}\right) . \tag{6}
\end{align*}
$$

Note that the direction d is feasible : $A d=0$. In order to improve the objective function while remaining in the feasible region, we compute the step length θ^{0} along the direction d as follows:

$$
\begin{equation*}
\theta^{0}=\min \left\{\theta_{j_{1}}, \theta_{j_{2}}, 1\right\}, \theta_{j_{1}}=\min \left\{\theta_{j}, j \in J_{B}\right\}, \theta_{j_{2}}=\min \left\{\theta_{j}, j \in J_{N E}\right\}, \tag{7}
\end{equation*}
$$

where $\theta_{j}=\left(u_{j}-x_{j}\right) / d_{j}$, if $d_{j}>0 ; \theta_{j}=\left(l_{j}-x_{j}\right) / d_{j}$, if $d_{j}<0 ; \theta_{j}=\infty$, if $d_{j}=0$.
Then the new FS is $\bar{x}=x+\theta^{0} d$. We can prove that $z(\bar{x})-z(x)=\theta^{0} \gamma=\theta^{0}(\beta+\mu) \geq 0$ (d is an ascent direction) and $\bar{\beta}=\beta\left(\bar{x}, J_{B}\right)=\left(1-\theta^{0}\right) \beta-\theta^{0} \mu \leq \beta$ (the suboptimality decreases). If $\theta^{0}=1$, then $J_{N E}^{+} \cup J_{N E}^{-}=\emptyset \Rightarrow \mu=0 \Rightarrow \bar{\beta}=0$. So $\left\{\bar{x}, J_{B}\right\}$ is optimal.
If $\bar{\beta} \leq \epsilon$, then the algorithm stops with the ϵ-optimal pair $\left\{\bar{x}, J_{B}\right\}$.
If $\theta^{0}=\theta_{j_{2}}$, then we start a new iteration with the pair $\left\{\bar{x}, J_{B}\right\}$. Else $\left(\theta^{0}=\theta_{j_{1}}<1\right)$, we compute the n-vector $\kappa=x+d$ and the real number $\alpha_{0}=\kappa_{j_{1}}-\bar{x}_{j_{1}}$, where j_{1} is the index computed in (7). We compute the dual direction t :

$$
\begin{equation*}
t_{j_{1}}=-\operatorname{sign}\left(\alpha_{0}\right) ; t_{j}=0, j \neq j_{1}, j \in J_{B} ; t_{N}^{T}=t_{B}^{T} A_{B}^{-1} A_{N} \tag{8}
\end{equation*}
$$

We compute the sets : $J_{N 0}^{+}=\left\{j \in J_{N 0}: t_{j}>0\right\}, J_{N 0}^{-}=\left\{j \in J_{N 0}: t_{j}<0\right\}$, and the quantity :

$$
\begin{equation*}
\alpha=-\left|\alpha_{0}\right|+\sum_{j \in J_{N 0}^{+} \cup J_{N E}^{+}} t_{j}\left(\kappa_{j}-l_{j}\right)+\sum_{j \in J_{N 0}^{-} \cup J_{N E}^{-}} t_{j}\left(\kappa_{j}-u_{j}\right) . \tag{9}
\end{equation*}
$$

We compute the new reduced costs vector and the new support as follows :

$$
\begin{align*}
& \bar{\Delta}=\Delta+\sigma^{0} t \text { and } \bar{J}_{B}=\left(J_{B} \backslash\left\{j_{1}\right\}\right) \cup\left\{j_{0}\right\}, \text { where } \\
& \sigma^{0}=\sigma_{j_{0}}=\min _{j \in J_{N}}\left\{\sigma_{j}\right\}, \text { with } \sigma_{j}= \begin{cases}\frac{-\Delta_{j}}{t_{j}}, & \text { if } \Delta_{j} t_{j}<0 ; \\
0, & \text { if } j \in J_{N 0}^{-} \text {and } \kappa_{j} \neq u_{j} ; \\
0, & \text { if } j \in J_{N 0}^{+} \text {and } \kappa_{j} \neq l_{j} ; \\
\infty, & \text { otherwise. }\end{cases} \tag{10}
\end{align*}
$$

We can prove that $\overline{\bar{\beta}}=\beta\left(\bar{x}, \bar{J}_{B}\right)=\beta\left(\bar{x}, J_{B}\right)+\sigma^{0} \alpha$. If $\overline{\bar{\beta}} \leq \epsilon$, then the algorithm stops with the ϵ-optimal pair $\left\{\bar{x}, \bar{J}_{B}\right\}$. If $\alpha>0$, we start a new iteration with the SFS $\left\{\bar{x}, J_{B}\right\}$. Else, we start a new iteration with the $\operatorname{SFS}\left\{\bar{x}, \bar{J}_{B}\right\}$.

4 Conclusion

In this work, we have suggested a new hybrid direction method for solving linear programs with bounded variables. In futur work, we will compare it with the simplex algorithm [3] on randomly generated and practical test problems.

Références

[1] Mohand Ouamer Bibi and Mohand Bentobache. A hybrid direction algorithm for solving linear programs. International Journal of Computer Mathematics, 92(2) :200-216, 2015.
[2] Mohand Bentobache and Mohand Ouamer Bibi. Numerical Methods of Linear and Quadratic Programming. French Academic Presses, Germany, 2016 (in french).
[3] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, N.J., 1963.

